Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46132
Full metadata record
DC FieldValueLanguage
dc.contributor.authorВдович, А.
dc.contributor.authorЗачек, І.
dc.contributor.authorЛевицький, Р.
dc.contributor.authorVdovych, A.
dc.contributor.authorZachek, I.
dc.contributor.authorLevitskii, R.
dc.date.accessioned2020-02-27T08:51:46Z-
dc.date.available2020-02-27T08:51:46Z-
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.identifier.citationVdovych A. Calculation of transverse piezoelectric characteristics of quasi-one-dimensional glycine phosphite ferroelectric / A. Vdovych, I. Zachek, R. Levitskii // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 242–252.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46132-
dc.description.abstractДля дослідження п’єзоелектричних характеристик кристала фосфіту гліцину використано модифіковану модель фосфіту гліцину з урахування п’єзоелектричного зв’язку структурних елементів, які впорядковуються, з деформаціями ґратки. В наближенні двочастинкового кластера розраховано поперечні п’єзоелектричні коефіцієнти. Досліджено вплив гідростатичного, одновісних тисків, зсувних напруг і поперечних електричних полів на поперечні п’єзоелектричні характеристики кристала.
dc.description.abstractThe model of the glycine phosphite crystal, modified by taking into account of piezoelectric coupling of ordering structure elements with the lattice strains, is used for investigation of piezoelectric characteristics of the crystal. In the frames of two-particle cluster approximation the transverse piezoelectric coefficients are calculated. The influences of hydrostatic, uniaxial pressures, shear stresses and transverse electric fields on the transverse piezoelectric coefficients of the crystal are studied.
dc.format.extent242-252
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (5), 2018
dc.subjectсегнетоелектрики
dc.subjectфазовий перехід
dc.subjectп’єзоелектричні коефіцієнти
dc.subjectвплив тиску
dc.subjectвплив поля
dc.subjectferroelectrics
dc.subjectphase transition
dc.subjectpiezoelectric coefficients
dc.subjectpressure effects
dc.subjectexternal field effects
dc.titleCalculation of transverse piezoelectric characteristics of quasi-one-dimensional glycine phosphite ferroelectric
dc.title.alternativeРозрахунок поперечних п’єзоелектричних характеристик квазіодновимірного сегнетоелектрика фосфіту гліцину
dc.typeArticle
dc.rights.holderCMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University
dc.contributor.affiliationІнститут фізики конденсованих систем НАН України
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationInstitute for Condensed Matter Physics of the National Academy of Sciences of Ukraine
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages11
dc.identifier.citationenVdovych A. Calculation of transverse piezoelectric characteristics of quasi-one-dimensional glycine phosphite ferroelectric / A. Vdovych, I. Zachek, R. Levitskii // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 242–252.
dc.relation.references1. Dacko S., Czapla Z., Baran J., Drozd M. Ferroelectricity in Gly·H3PO3 crystal. Physics Letters A. 223 (3), 217–220 (1996).
dc.relation.references2. Stasyuk I., Czapla Z., Dacko S., Velychko O. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys.: Condens Matter. 16 (12), 1963 (2004).
dc.relation.references3. Zachek I. R., Shchur Ya, Levitskii R. R., Vdovych A. S. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal. Physica B. 520, 164–173 (2017).
dc.relation.references4. Zachek I. R., Levitskii R. R., Vdovych A. S. The effect of hydrostatic pressure on thermodynamic characteristics of NH3CH2COOH·H2PO3 type ferroelectric materials. Condens. Matter Phys. 20 (4), 43707 (2017).
dc.relation.references5. Zachek I. R., Levitskii R. R., Vdovych A. S. The influence of uniaxial pressures on thermodynamic properties of the GPI ferroelectric. J. Phys. Study. 21, 1704 (2017), (in Ukrainian).
dc.relation.references6. Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V. Influence of electric fields on thermodynamic properties of GPI ferroelectric. Condens. Matter Phys. 20 (2), 23706 (2017).
dc.relation.references7. Zachek I. R., Levitskii R. R., Vdovych A. S. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21 (3), 33702 (2018).
dc.relation.references8. Yasuda N., Sakurai T., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly·H3PO3). J. Phys.: Condens Matter. 9 (33), L347 (1997).
dc.relation.referencesen1. Dacko S., Czapla Z., Baran J., Drozd M. Ferroelectricity in Gly·H3PO3 crystal. Physics Letters A. 223 (3), 217–220 (1996).
dc.relation.referencesen2. Stasyuk I., Czapla Z., Dacko S., Velychko O. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys., Condens Matter. 16 (12), 1963 (2004).
dc.relation.referencesen3. Zachek I. R., Shchur Ya, Levitskii R. R., Vdovych A. S. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal. Physica B. 520, 164–173 (2017).
dc.relation.referencesen4. Zachek I. R., Levitskii R. R., Vdovych A. S. The effect of hydrostatic pressure on thermodynamic characteristics of NH3CH2COOH·H2PO3 type ferroelectric materials. Condens. Matter Phys. 20 (4), 43707 (2017).
dc.relation.referencesen5. Zachek I. R., Levitskii R. R., Vdovych A. S. The influence of uniaxial pressures on thermodynamic properties of the GPI ferroelectric. J. Phys. Study. 21, 1704 (2017), (in Ukrainian).
dc.relation.referencesen6. Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V. Influence of electric fields on thermodynamic properties of GPI ferroelectric. Condens. Matter Phys. 20 (2), 23706 (2017).
dc.relation.referencesen7. Zachek I. R., Levitskii R. R., Vdovych A. S. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21 (3), 33702 (2018).
dc.relation.referencesen8. Yasuda N., Sakurai T., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly·H3PO3). J. Phys., Condens Matter. 9 (33), L347 (1997).
dc.citation.issue2
dc.citation.spage242
dc.citation.epage252
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.subject.udc536.96
dc.subject.udc537.226(4
dc.subject.udc82
dc.subject.udc83
dc.subject.udc86)
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2

Files in This Item:
File Description SizeFormat 
2018v5n2_Vdovych_A-Calculation_of_transverse_242-252.pdf1.51 MBAdobe PDFView/Open
2018v5n2_Vdovych_A-Calculation_of_transverse_242-252__COVER.png404.44 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.