DC Field | Value | Language |
dc.contributor.author | Вдович, А. | |
dc.contributor.author | Зачек, І. | |
dc.contributor.author | Левицький, Р. | |
dc.contributor.author | Vdovych, A. | |
dc.contributor.author | Zachek, I. | |
dc.contributor.author | Levitskii, R. | |
dc.date.accessioned | 2020-02-27T08:51:46Z | - |
dc.date.available | 2020-02-27T08:51:46Z | - |
dc.date.created | 2018-02-26 | |
dc.date.issued | 2018-02-26 | |
dc.identifier.citation | Vdovych A. Calculation of transverse piezoelectric characteristics of quasi-one-dimensional glycine phosphite ferroelectric / A. Vdovych, I. Zachek, R. Levitskii // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 242–252. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46132 | - |
dc.description.abstract | Для дослідження п’єзоелектричних характеристик кристала фосфіту гліцину використано
модифіковану модель фосфіту гліцину з урахування п’єзоелектричного зв’язку
структурних елементів, які впорядковуються, з деформаціями ґратки. В наближенні
двочастинкового кластера розраховано поперечні п’єзоелектричні коефіцієнти. Досліджено
вплив гідростатичного, одновісних тисків, зсувних напруг і поперечних
електричних полів на поперечні п’єзоелектричні характеристики кристала. | |
dc.description.abstract | The model of the glycine phosphite crystal, modified by taking into account of piezoelectric
coupling of ordering structure elements with the lattice strains, is used for investigation of
piezoelectric characteristics of the crystal. In the frames of two-particle cluster approximation the transverse piezoelectric coefficients are calculated. The influences of hydrostatic,
uniaxial pressures, shear stresses and transverse electric fields on the transverse piezoelectric coefficients of the crystal are studied. | |
dc.format.extent | 242-252 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (5), 2018 | |
dc.subject | сегнетоелектрики | |
dc.subject | фазовий перехід | |
dc.subject | п’єзоелектричні коефіцієнти | |
dc.subject | вплив тиску | |
dc.subject | вплив поля | |
dc.subject | ferroelectrics | |
dc.subject | phase transition | |
dc.subject | piezoelectric coefficients | |
dc.subject | pressure effects | |
dc.subject | external field effects | |
dc.title | Calculation of transverse piezoelectric characteristics of quasi-one-dimensional glycine phosphite ferroelectric | |
dc.title.alternative | Розрахунок поперечних п’єзоелектричних характеристик квазіодновимірного сегнетоелектрика фосфіту гліцину | |
dc.type | Article | |
dc.rights.holder | CMM IAPMM NASU | |
dc.rights.holder | © 2018 Lviv Polytechnic National University | |
dc.contributor.affiliation | Інститут фізики конденсованих систем НАН України | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 11 | |
dc.identifier.citationen | Vdovych A. Calculation of transverse piezoelectric characteristics of quasi-one-dimensional glycine phosphite ferroelectric / A. Vdovych, I. Zachek, R. Levitskii // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 242–252. | |
dc.relation.references | 1. Dacko S., Czapla Z., Baran J., Drozd M. Ferroelectricity in Gly·H3PO3 crystal. Physics Letters A. 223 (3), 217–220 (1996). | |
dc.relation.references | 2. Stasyuk I., Czapla Z., Dacko S., Velychko O. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys.: Condens Matter. 16 (12), 1963 (2004). | |
dc.relation.references | 3. Zachek I. R., Shchur Ya, Levitskii R. R., Vdovych A. S. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal. Physica B. 520, 164–173 (2017). | |
dc.relation.references | 4. Zachek I. R., Levitskii R. R., Vdovych A. S. The effect of hydrostatic pressure on thermodynamic characteristics of NH3CH2COOH·H2PO3 type ferroelectric materials. Condens. Matter Phys. 20 (4), 43707 (2017). | |
dc.relation.references | 5. Zachek I. R., Levitskii R. R., Vdovych A. S. The influence of uniaxial pressures on thermodynamic properties of the GPI ferroelectric. J. Phys. Study. 21, 1704 (2017), (in Ukrainian). | |
dc.relation.references | 6. Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V. Influence of electric fields on thermodynamic properties of GPI ferroelectric. Condens. Matter Phys. 20 (2), 23706 (2017). | |
dc.relation.references | 7. Zachek I. R., Levitskii R. R., Vdovych A. S. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21 (3), 33702 (2018). | |
dc.relation.references | 8. Yasuda N., Sakurai T., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly·H3PO3). J. Phys.: Condens Matter. 9 (33), L347 (1997). | |
dc.relation.referencesen | 1. Dacko S., Czapla Z., Baran J., Drozd M. Ferroelectricity in Gly·H3PO3 crystal. Physics Letters A. 223 (3), 217–220 (1996). | |
dc.relation.referencesen | 2. Stasyuk I., Czapla Z., Dacko S., Velychko O. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys., Condens Matter. 16 (12), 1963 (2004). | |
dc.relation.referencesen | 3. Zachek I. R., Shchur Ya, Levitskii R. R., Vdovych A. S. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal. Physica B. 520, 164–173 (2017). | |
dc.relation.referencesen | 4. Zachek I. R., Levitskii R. R., Vdovych A. S. The effect of hydrostatic pressure on thermodynamic characteristics of NH3CH2COOH·H2PO3 type ferroelectric materials. Condens. Matter Phys. 20 (4), 43707 (2017). | |
dc.relation.referencesen | 5. Zachek I. R., Levitskii R. R., Vdovych A. S. The influence of uniaxial pressures on thermodynamic properties of the GPI ferroelectric. J. Phys. Study. 21, 1704 (2017), (in Ukrainian). | |
dc.relation.referencesen | 6. Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V. Influence of electric fields on thermodynamic properties of GPI ferroelectric. Condens. Matter Phys. 20 (2), 23706 (2017). | |
dc.relation.referencesen | 7. Zachek I. R., Levitskii R. R., Vdovych A. S. Deformation effects in glycinium phosphite ferroelectric. Condens. Matter Phys. 21 (3), 33702 (2018). | |
dc.relation.referencesen | 8. Yasuda N., Sakurai T., Czapla Z. Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly·H3PO3). J. Phys., Condens Matter. 9 (33), L347 (1997). | |
dc.citation.issue | 2 | |
dc.citation.spage | 242 | |
dc.citation.epage | 252 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.subject.udc | 536.96 | |
dc.subject.udc | 537.226(4 | |
dc.subject.udc | 82 | |
dc.subject.udc | 83 | |
dc.subject.udc | 86) | |
Appears in Collections: | Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 2
|