Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46009
Title: Black carbon content and distribution in surface sediments from temperate-zone reservoirs (Poland)
Authors: Gruca-Rokosz, Renata
Cieśla, Maksymilian
Affiliation: Rzeszów University of Technology
Bibliographic description (Ukraine): Gruca-Rokosz R. Black carbon content and distribution in surface sediments from temperate-zone reservoirs (Poland) / Renata Gruca-Rokosz, Maksymilian Cieśla // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 1. — P. 6–13.
Bibliographic description (International): Gruca-Rokosz R. Black carbon content and distribution in surface sediments from temperate-zone reservoirs (Poland) / Renata Gruca-Rokosz, Maksymilian Cieśla // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 1. — P. 6–13.
Is part of: Екологічні проблеми, 1 (4), 2019
Environmental Problems, 1 (4), 2019
Journal/Collection: Екологічні проблеми
Issue: 1
Volume: 4
Issue Date: 26-Feb-2019
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: black carbon
total organic carbon
sediment
reservoir
Number of pages: 8
Page range: 6-13
Start page: 6
End page: 13
Abstract: This paper presents the results of first studies concerning the content of black carbon (BC) (which may be played a significant role in the accumulation of dangerous pollutants) in sediments of three reservoirs located in south-eastern Poland. The BC studies made use of the chemical-thermal oxidation method (CTO-375).
URI: https://ena.lpnu.ua/handle/ntb/46009
Copyright owner: © Національний університет “Львівська політехніка”, 2019
© Gruca-Rokosz R., Cieśla M., 2019
URL for reference material: https://doi.org/10.1111/j.1440-1770.2005.00277.x
https://doi.org/10.1016/j.ecoenv.2015.12.024
https://doi.org/10.1016/S0309-1708(02)00045-3
https://doi.org/10.1029/2000GB001380
https://doi.org/10.1016/S0065-2113(04)85005-3
https://doi.org/10.1007/BF00994921
https://doi.org/10.1007/s00343-009-9151-x
https://doi.org/10.1016/j.chemosphere.2005.08.034
https://doi.org/10.1016/j.jhazmat.2011.03.073
https://doi.org/10.1007/978-94-011-5552-6_34
https://doi.org/10.1016/S0304-4203(99)00005-5
https://doi.org/10.1016/S0001-8686(98)00055-4
http://dx.doi.org/10.1590/S0103-50532008000700008
https://doi.org/10.1029/1999GB001208
https://doi.org/10.1016/j.jes.2015.04.009
https://doi.org/10.1007/s10750-010-0148-4
http://www.epa.gov/nerlcwww/m440_0.pdf
References (Ukraine): 1. Abe D. S., Adams D. D., Sidagis Galli C. V., Sikar E., Tundisi J. G.: Sediment greenhouse gases (methane and carbon dioxide) in the Lobo-Broa Reservoir, Concentrations and diffuse emission fluxes for carbon budget considerations, Lakes & Reservoirs: Research and Management, Brazil, São Paulo State, 2005, 10: 201–209.https://doi.org/10.1111/j.1440-1770.2005.00277.x
2. Ali U., Bajwa A., Chaudhry M. J. I., Mahmood A., Syed J. H., Li J., Zhang G., Jones, K. C., Malik, R. N.: Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Ecotoxicology and Environmental Safety, Pakistan, 2016, 126, 177–185. https://doi.org/10.1016/j.ecoenv.2015.12.024.
3. Allen-King R., Grathwohl P., Ball W.: New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogenous carbonaceous matter in soils, sediments and rocks, Advances in Water Resources,2002, 25, 985-1016. https://doi.org/10.1016/S0309-1708(02)00045-3
4. Bednarek A., Zalewski M.: Potential effects of enhancing denitrification rates in sediments of the Sulejów Reservoir, Environment Protection Engineering, 2007, 33(2), 35–43.
5. Bird M. I., Cali J. A.: A million-year record of fire in sub-Saharan Africa, Nature, 1998, 394, 767–769. doi: 10.1038/29507.
6. Cornelissen G., Gustafsson O., Bucheli T., Jonker M., Koelmans A., van Noort P.: Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environmental Science and Technology, 2005, 39(18), 6881–6895. doi: 10.1021/es050191b.
7. Cornelissen G., Kukulska Z., Kalaitzidis S., Christanis K., Gustafsson O.: Relations between environmental black carbon sorption and geochemical sorbent characteristics, Environmental Science and Technology, 2004, 38: 3632–3640. doi: 10.1021/es0498742.
8. Cornelissen M., Elmquist M., Groth I., Gustafsson O.: Effect of sorbate planarity on environmental black carbon sorption, Environmental Science & Technology, 2004 a, 38(13), 3574–3580. doi: 10.1021/es049862g.
9. Crutzen P. J., Andreae M. O.: Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 1990, 250, 1669–1678. doi: 10.1126/science.250.4988.1669.
10. Goldberg E. D.: Black Carbon in the Environment. John Wiley, New York, 1985, 198 pp.
11. González-Vila F. J., de la Rosa M., González-Pérez J. A.: Black carbon and other refractory forms in recent sediments from the Gulf of Cadiz, IOP Conference Series Earth and Environmental Science, Spain, 2009, 5(1):012009. doi: 10.1088/1755-1307/5/1/012009.
12. Gruca-Rokosz R.: Dynamika węglowych gazów cieplarnianych w zbiornikach zaporowych: mechanizmy produkcji, emisja do atmosfery. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2016, 132 pp.
13. Gustafsson Ö. R., Gschwend P. M.: The flux of black carbon to surface sediments on the New England continental shelf, Geochimica et Cosmochimica Acta, 1998, 62(3), 465–472. doi: 10.1016/S0016-7037(97)003700.
14. Gustafsson O., Bucheli T. D., Kukulska Z., Andersson M., Largeau C., Rouzaud J.-N., Reddy C. M., Eglington T. I.: Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles, 2001, 15, 881–890. https://doi.org/10.1029/2000GB001380
15. Gwóźdź R., Grodecki M.: Analiza możliwości zastosowania osadów spoistych zbiornika rożnowskiego do uszczelnienia wałów powodziowych, Czasopismo Techniczne, Wydawnictwo Politechniki Krakowskiej, 2011,2-Ś/2011.
16. Haynes R.: Labile organic matter fractions as central components of the quality of agricultural soils: an overview, Advances in Agronomy, 2005, 85, 221–268. https://doi.org/10.1016/S0065-2113(04)85005-3
17. Haziak T., Czaplicka-Kotas A., Ślusarczyk Z., Szalińska E.: Przestrzenne zmiany stężeń cynku w osadach dennych Zbiornika Czorsztyńskiego, Inżynieria i Ochrona Środowiska, 2013, 16(1), 57-68.
18. Hellings L., Dehairs F., TackxM., Keppens E., Baeyens W.: Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition. Biogeochemistry, 1999, 47, 167–186. https://doi.org/10.1007/BF00994921.
19. Huang L.: Distribution of black carbon in the sediments from the Changjiang River, International Conference on Materials, Environmental and Biological Engineering, 2015. doi: 10.2991/mebe-15.2015.96.
20. Kang Y., Wang X., Dai M., Feng H., Li A., Qian Song Q.: Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China’s marginal seas, Chinese Journal of Oceanology and Limnology, 2009, 27, 297. https://doi.org/10.1007/s00343-009-9151-x.
21. Koelmans A. A., Jonker M. T. O., Cornelissen G., Bucheli T. D., Van Noort P. C. M., Gustafsson O.: Black carbon: The reverse of its dark side, Chemosphere, 2006, 63(3), 365-377. https://doi.org/10.1016/j.chemosphere.2005.08.034.
22. Koszelnik P.: Źródła i dystrybucja pierwiastków biogennych na przykładzie zespołu zbiorników zaporowych Solina – Myczkowce. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2009, 147 pp.
23. Koszelnik P., Tomaszek J., Gruca-Rokosz R.: Carbon and nitrogen and their elemental and isotopic ratios in the bottom sediment of the Solina-Myczkowce complex of reservoirs, Oceanological and Hydrobiological Studies, 2008, 37(3), 71–78. doi: 10.2478/v10009-008-0007-z.
24. Lohmann R., Bollinger K., Cantwell M., Feichter J., Fischer-Bruns I., Zabel M.: Fluxes of soot black carbon to South Atlantic sediments, Global Biogeochemical Cycles, 2009, 23, GB1015, doi:10.1029/2008GB003253.
25. Lohmann R., MacFarlane J. K., Gschwendp P. M.: Importance of Black Carbon to Sorption of Native PAHs, PCBs, and PCDDs in Boston and New York Harbor Sediments Environmental Science & Technology, 2005, 39, 141–148. doi: 10.1021/es049424+.
26. Lou L., Luo L., Wang W., Xu X., Hou J., Xun B., Chen Y.: Impact of black carbon originated from fly ash and soot on the toxicity of pentachlorophenol in sediment, Journal of Hazardous Materials, 2011, 190 (1-3), 474–479. https://doi.org/10.1016/j.jhazmat.2011.03.073.
27. Martinotti W., Camusso M., Guzzi L., Patrolecco L., Pettine M.: C, N and their stable isotopes in suspended and sedimented matter from the Po estuary (Italy), Water, Air and Soil Pollution, 1997, 99, 325–332. https://doi.org/10.1007/978-94-011-5552-6_34
28. Masiello C.A., Druffel E. R. M.: Black Carbon in Deep- Sea Sediments, Science, 1998, 280(5371), 1911–1913. doi: 10.1126/science.280.5371.1911.
29. Middelburg J. J., Nieuwenhuize J., van Breugel P.: Black carbon in marine sediments, Marine Chemistry, 1999, 65, 245–252. https://doi.org/10.1016/S0304-4203(99)00005-5.
30. Ostrowska A., Gawliński S., Szczubiałka Z.: Metody analizy i oceny właściwości gleb i roślin, IOŚ Warszawa, 1991.
31. Pignatello J.: Soil organic matter as a nanoporous sorbent of organic pollutants, Advances in Colloid and Interface Science, 1998, 77–78: 445–467. https://doi.org/10.1016/S0001-8686(98)00055-4.
32. Rhoades B.: The contribution of black carbon to bulk Lake Superior sediment, Duluth Journal of Undergraduate Research, 2014, 72–76.
33. Ribeiro L. G. L., Carreira R. S., Wagener A. L. R.: Black carbon contents and distribution in sediments from the southeastern Brazilian coast (Guanabara Bay) J. Braz. Chem. Soc., 2008, 19(7), 1277–1283. http://dx.doi.org/10.1590/S0103-50532008000700008.
34. Schmid M. W. I., Noack A. G.: Black carbon in soils and sediments, Analysis, distribution, implications, and current challenges, Global Biogeochemical Cycles, 2000, 14(3), 777–793. https://doi.org/10.1029/1999GB001208.
35. Staniszewska M., Koniecko I., Falkowska L., Burska D., Kiełczewska J.: The relationship between the black carbon and bisphenol A in sea and river sediments (Southern Baltic), Journal of Environmental Sciences, 2016, 41, 24–32. https://doi.org/10.1016/j.jes.2015.04.009.
36. Trojanowska A., Kurasiewicz M., Pleśniak Ł., Jędrysek M. O.: Emission of methane from sediments of selected Polish dam reservoir, Teka Kom. Ochr. Środ. Przyr. – OL PAN, 2009, 6, 368–373.
37. Vreča P., Muri G.: Sediment organic matter in mountain lakes of north-western Slovenia and its stable isotopic signatures: records of natural and anthropogenic impacts, Hydrobiologia, 2010, 648, 35–49. https://doi.org/10.1007/s10750-010-0148-4.
38. Wójcik D.: Charakterystyka osadów dennych zbiornika zaporowego Dobczyce, Ochrona Środowiska, 1991, 1(42), 31–34.
39. Zimmermann C. F., Keefe C. W., Bashe J.: Determination of carbon and nitrogen in sediments and particulates/coastal waters using elemental analysis. Method 440.0. NER Laboratory, USEPA, Cincinnati, Ohio, 1997. http://www.epa.gov/nerlcwww/m440_0.pdf.
References (International): 1. Abe D. S., Adams D. D., Sidagis Galli C. V., Sikar E., Tundisi J. G., Sediment greenhouse gases (methane and carbon dioxide) in the Lobo-Broa Reservoir, Concentrations and diffuse emission fluxes for carbon budget considerations, Lakes & Reservoirs: Research and Management, Brazil, São Paulo State, 2005, 10: 201–209.https://doi.org/10.1111/j.1440-1770.2005.00277.x
2. Ali U., Bajwa A., Chaudhry M. J. I., Mahmood A., Syed J. H., Li J., Zhang G., Jones, K. C., Malik, R. N., Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Ecotoxicology and Environmental Safety, Pakistan, 2016, 126, 177–185. https://doi.org/10.1016/j.ecoenv.2015.12.024.
3. Allen-King R., Grathwohl P., Ball W., New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogenous carbonaceous matter in soils, sediments and rocks, Advances in Water Resources,2002, 25, 985-1016. https://doi.org/10.1016/S0309-1708(02)00045-3
4. Bednarek A., Zalewski M., Potential effects of enhancing denitrification rates in sediments of the Sulejów Reservoir, Environment Protection Engineering, 2007, 33(2), 35–43.
5. Bird M. I., Cali J. A., A million-year record of fire in sub-Saharan Africa, Nature, 1998, 394, 767–769. doi: 10.1038/29507.
6. Cornelissen G., Gustafsson O., Bucheli T., Jonker M., Koelmans A., van Noort P., Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation, Environmental Science and Technology, 2005, 39(18), 6881–6895. doi: 10.1021/es050191b.
7. Cornelissen G., Kukulska Z., Kalaitzidis S., Christanis K., Gustafsson O., Relations between environmental black carbon sorption and geochemical sorbent characteristics, Environmental Science and Technology, 2004, 38: 3632–3640. doi: 10.1021/es0498742.
8. Cornelissen M., Elmquist M., Groth I., Gustafsson O., Effect of sorbate planarity on environmental black carbon sorption, Environmental Science & Technology, 2004 a, 38(13), 3574–3580. doi: 10.1021/es049862g.
9. Crutzen P. J., Andreae M. O., Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 1990, 250, 1669–1678. doi: 10.1126/science.250.4988.1669.
10. Goldberg E. D., Black Carbon in the Environment. John Wiley, New York, 1985, 198 pp.
11. González-Vila F. J., de la Rosa M., González-Pérez J. A., Black carbon and other refractory forms in recent sediments from the Gulf of Cadiz, IOP Conference Series Earth and Environmental Science, Spain, 2009, 5(1):012009. doi: 10.1088/1755-1307/5/1/012009.
12. Gruca-Rokosz R., Dynamika węglowych gazów cieplarnianych w zbiornikach zaporowych: mechanizmy produkcji, emisja do atmosfery. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2016, 132 pp.
13. Gustafsson Ö. R., Gschwend P. M., The flux of black carbon to surface sediments on the New England continental shelf, Geochimica et Cosmochimica Acta, 1998, 62(3), 465–472. doi: 10.1016/S0016-7037(97)003700.
14. Gustafsson O., Bucheli T. D., Kukulska Z., Andersson M., Largeau C., Rouzaud J.-N., Reddy C. M., Eglington T. I., Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles, 2001, 15, 881–890. https://doi.org/10.1029/2000GB001380
15. Gwóźdź R., Grodecki M., Analiza możliwości zastosowania osadów spoistych zbiornika rożnowskiego do uszczelnienia wałów powodziowych, Czasopismo Techniczne, Wydawnictwo Politechniki Krakowskiej, 2011,2-Ś/2011.
16. Haynes R., Labile organic matter fractions as central components of the quality of agricultural soils: an overview, Advances in Agronomy, 2005, 85, 221–268. https://doi.org/10.1016/S0065-2113(04)85005-3
17. Haziak T., Czaplicka-Kotas A., Ślusarczyk Z., Szalińska E., Przestrzenne zmiany stężeń cynku w osadach dennych Zbiornika Czorsztyńskiego, Inżynieria i Ochrona Środowiska, 2013, 16(1), 57-68.
18. Hellings L., Dehairs F., TackxM., Keppens E., Baeyens W., Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition. Biogeochemistry, 1999, 47, 167–186. https://doi.org/10.1007/BF00994921.
19. Huang L., Distribution of black carbon in the sediments from the Changjiang River, International Conference on Materials, Environmental and Biological Engineering, 2015. doi: 10.2991/mebe-15.2015.96.
20. Kang Y., Wang X., Dai M., Feng H., Li A., Qian Song Q., Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China’s marginal seas, Chinese Journal of Oceanology and Limnology, 2009, 27, 297. https://doi.org/10.1007/s00343-009-9151-x.
21. Koelmans A. A., Jonker M. T. O., Cornelissen G., Bucheli T. D., Van Noort P. C. M., Gustafsson O., Black carbon: The reverse of its dark side, Chemosphere, 2006, 63(3), 365-377. https://doi.org/10.1016/j.chemosphere.2005.08.034.
22. Koszelnik P., Źródła i dystrybucja pierwiastków biogennych na przykładzie zespołu zbiorników zaporowych Solina – Myczkowce. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2009, 147 pp.
23. Koszelnik P., Tomaszek J., Gruca-Rokosz R., Carbon and nitrogen and their elemental and isotopic ratios in the bottom sediment of the Solina-Myczkowce complex of reservoirs, Oceanological and Hydrobiological Studies, 2008, 37(3), 71–78. doi: 10.2478/v10009-008-0007-z.
24. Lohmann R., Bollinger K., Cantwell M., Feichter J., Fischer-Bruns I., Zabel M., Fluxes of soot black carbon to South Atlantic sediments, Global Biogeochemical Cycles, 2009, 23, GB1015, doi:10.1029/2008GB003253.
25. Lohmann R., MacFarlane J. K., Gschwendp P. M., Importance of Black Carbon to Sorption of Native PAHs, PCBs, and PCDDs in Boston and New York Harbor Sediments Environmental Science & Technology, 2005, 39, 141–148. doi: 10.1021/es049424+.
26. Lou L., Luo L., Wang W., Xu X., Hou J., Xun B., Chen Y., Impact of black carbon originated from fly ash and soot on the toxicity of pentachlorophenol in sediment, Journal of Hazardous Materials, 2011, 190 (1-3), 474–479. https://doi.org/10.1016/j.jhazmat.2011.03.073.
27. Martinotti W., Camusso M., Guzzi L., Patrolecco L., Pettine M., C, N and their stable isotopes in suspended and sedimented matter from the Po estuary (Italy), Water, Air and Soil Pollution, 1997, 99, 325–332. https://doi.org/10.1007/978-94-011-5552-6_34
28. Masiello C.A., Druffel E. R. M., Black Carbon in Deep- Sea Sediments, Science, 1998, 280(5371), 1911–1913. doi: 10.1126/science.280.5371.1911.
29. Middelburg J. J., Nieuwenhuize J., van Breugel P., Black carbon in marine sediments, Marine Chemistry, 1999, 65, 245–252. https://doi.org/10.1016/S0304-4203(99)00005-5.
30. Ostrowska A., Gawliński S., Szczubiałka Z., Metody analizy i oceny właściwości gleb i roślin, IOŚ Warszawa, 1991.
31. Pignatello J., Soil organic matter as a nanoporous sorbent of organic pollutants, Advances in Colloid and Interface Science, 1998, 77–78: 445–467. https://doi.org/10.1016/S0001-8686(98)00055-4.
32. Rhoades B., The contribution of black carbon to bulk Lake Superior sediment, Duluth Journal of Undergraduate Research, 2014, 72–76.
33. Ribeiro L. G. L., Carreira R. S., Wagener A. L. R., Black carbon contents and distribution in sediments from the southeastern Brazilian coast (Guanabara Bay) J. Braz. Chem. Soc., 2008, 19(7), 1277–1283. http://dx.doi.org/10.1590/S0103-50532008000700008.
34. Schmid M. W. I., Noack A. G., Black carbon in soils and sediments, Analysis, distribution, implications, and current challenges, Global Biogeochemical Cycles, 2000, 14(3), 777–793. https://doi.org/10.1029/1999GB001208.
35. Staniszewska M., Koniecko I., Falkowska L., Burska D., Kiełczewska J., The relationship between the black carbon and bisphenol A in sea and river sediments (Southern Baltic), Journal of Environmental Sciences, 2016, 41, 24–32. https://doi.org/10.1016/j.jes.2015.04.009.
36. Trojanowska A., Kurasiewicz M., Pleśniak Ł., Jędrysek M. O., Emission of methane from sediments of selected Polish dam reservoir, Teka Kom. Ochr. Środ. Przyr, OL PAN, 2009, 6, 368–373.
37. Vreča P., Muri G., Sediment organic matter in mountain lakes of north-western Slovenia and its stable isotopic signatures: records of natural and anthropogenic impacts, Hydrobiologia, 2010, 648, 35–49. https://doi.org/10.1007/s10750-010-0148-4.
38. Wójcik D., Charakterystyka osadów dennych zbiornika zaporowego Dobczyce, Ochrona Środowiska, 1991, 1(42), 31–34.
39. Zimmermann C. F., Keefe C. W., Bashe J., Determination of carbon and nitrogen in sediments and particulates/coastal waters using elemental analysis. Method 440.0. NER Laboratory, USEPA, Cincinnati, Ohio, 1997. http://www.epa.gov/nerlcwww/m440_0.pdf.
Content type: Article
Appears in Collections:Environmental Problems. – 2019. – Vol. 4, No. 1

Files in This Item:
File Description SizeFormat 
2019v4n1_Gruca-Rokosz_R-Black_carbon_content_6-13.pdf439.97 kBAdobe PDFView/Open
2019v4n1_Gruca-Rokosz_R-Black_carbon_content_6-13__COVER.png440.38 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.