Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45873
Title: Nature of the provenance and tectonic setting of oil shale (Middle eocene) in the Greater Caucasus southeastern plunge
Other Titles: Джерела зносу та тектонічні умови формування горючих сланців (середній еоцен) південно-східного занурення Великого Кавказу
Authors: Алієв, Аділь А.
Аббасов, Орхан Р.
Aliyev, Adil A.
Abbasov, Orhan R.
Affiliation: Азербайджанська національна академія наук
Azerbaijan National of Academy Sciences
Bibliographic description (Ukraine): Aliyev A. A. Nature of the provenance and tectonic setting of oil shale (Middle eocene) in the Greater Caucasus southeastern plunge / Adil A. Aliyev, Orhan R. Abbasov // Geodynamics : scientific journal. — Львів : Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 43–59.
Bibliographic description (International): Aliyev A. A. Nature of the provenance and tectonic setting of oil shale (Middle eocene) in the Greater Caucasus southeastern plunge / Adil A. Aliyev, Orhan R. Abbasov // Geodynamics : scientific journal. — Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 43–59.
Is part of: Геодинаміка : науковий журнал, 1 (26), 2019
Geodynamics : scientific journal, 1 (26), 2019
Journal/Collection: Геодинаміка : науковий журнал
Issue: 1 (26)
Issue Date: 26-Jun-2019
Publisher: Lviv Polytechnic Publishing House
Place of the edition/event: Львів
UDC: 550.422
552.52
551.21
551.24.05
Keywords: Великий Кавказ
горючі сланці
геохімія порід
протоліт
тектоніка
геодинаміка
вулканізм
басейн
Great Caucasus
oil shale
bulk rock geochemistry
protolith
tectonics
geodynamics
volcanism
basin
Number of pages: 17
Page range: 43-59
Start page: 43
End page: 59
Abstract: Відповідно до хімічного складу, встановлені протоліти та геотектонічні умови формування горючих сланців середньо-еоценового віку, відібраних з поверхневих виходів і викидів грязьових вулканів південно-східного занурення Великого Кавказу. Отримані дані зіставлені з палеогеодинамічними умовами району дослідження. Хімічний склад сланців встановлений за допомогою мас-спектрометрів “S8 TIGER Series 2 WDXRF” і “Agilent 7700 Series ICP-MS”, а при визначенні віку порід вико- ристовувалися мікроскопи “Loupe Zoom Paralux XTL 745” і “MБC-10” і цифрова камера “OptixCam”. Проведена нормалізація (порівняння з пост-архейськими сланцями Австралії, верхньою конти- нентальною корою і континентальною корою) у зв’язку з особливостями розподілу хімічних елементів, а також із застосуванням різних індексів і діаграм, встановлені джерела материнських магматичних порід і палеотектонічні умови їх формування. Встановлено, що базальт-андезитові утворення принесені з комплексів мафічних і проміжних джерел. Геотектонічні умови формування горючих сланців відповідають активним районам континентальної кори, а також зонам переходу від рифтогену до колізії або геодинамічним умовам первинної колізії. Отже, процес осадконакопичення, що відбувався в умовах мілководного морського басейну в зв’язку з первинною колізією між внутрішніми плитами, пов’язаний палеоцен-міоценовим басейном (північна гілка Мезотетіса в системі Крим-Великий Кавказ-Копетдаг). Особливу роль у встановленні походження кластичних матеріалів базальт-андезитового складу, відіграє юрський і крейдяний вулканізм, пов'язаний з субдукцією, встановленою на південному схилі Великого Кавказу (Тфанське і Вандамське підняття).
The protolith and tectonic settings of the Middle Eocene oil shale sampled from the outcrops and ejected products of mud volcanoes in the Greater Caucasus southeastern plunge were determined using bulk rock geochemistry data. The obtained results were adapted to the palaeogeodynamic conditions of the study areas. Method. The concentrations of element content in the samples were measured by “S8 TIGER Series 2 WDXRF” and “Agilent 7700 Series ICP-MS” mass spectrometers. The microscopes “Loupe Zoom Paralux XTL 745” and “MC-10” and a digital camera “OptixCam” were used to define the age of samples. The distribution of element contents of samples was normalized to Post-Archaean Australian shale (PAAS), Upper Continental Crust (UCC) and Continental Crust (CC). The source terrains of the parent rocks and tectonic settings of oil shale were determined using various ratios and diagrams. Results. The samples show a nature of basaltic and basalt andesitic protolith, which supports an idea that the original composition was derived from mafic and intermediate source terrains. The tectonic setting of oil shale correlates well with the active continental margin and the rift-tocollision transition or paleogeodynamic conditions of the initial collision. Thus, in the shallow sea basin and the initial collision conditions, the process of sedimentation in the middle Eocene was probably associated with the final Paleocene- Eocene basin, which was the northern branch of Meso-Tethys in the Crimea-Greater Caucasus-Kopetdag system. The Jurassic and Cretaceous volcanism associated with subductions, which occurred on the southern slope of the Greater Caucasus (in the Tufan and Vandam uplifts), played an important role as a source of transported materials. Scientific novelty. In the published literature, numerous geological and organic-geochemical features of oil shale in Azerbaijan have been studied. The literature on the study of the provenance and tectonic setting is nonexistent, and this study is the first attempt. Practical significance. The obtained results and the used methodology can be applied to study the genesis of the Middle Eocene deposits and as well as sedimentary rocks in Azerbaijan.
URI: https://ena.lpnu.ua/handle/ntb/45873
Copyright owner: © Інститут геології і геохімії горючих копалин Національної академії наук України, 2019
© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2019
© Національний університет «Львівська політехніка», 2019
© Adil A. Aliyev, Orhan R. Abbasov
URL for reference material: http://dx.doi.org/10.15863/TAS.2016.03.35.28
https://doi.org/10.31996/mru.2018.3.13–18
https://doi.org/10.1016/j.jsames.2007.02.003
https://doi.org/10.1130/0091–7613(1986)14<848:CMOACG>2.0.CO;2
https://doi.org/10.1306/D42682C5–2B26–11D7–8648000102C1865D
https://doi.org/10.1016/S0025–3227(97)00104–7
https://doi.org/10.1139/e71–055
https://doi.org/10.1144/GSL.SP.1982.010.01.36
https://doi.org/10.1130/0016–7606(2000)112<997:TIOSAT>2.0.CO;2
https://doi.org/10.1016/j.precamres.2009.10.004
https://doi.org/10.1016/B978–0–7506–3386–4.X5000–9
https://doi.org/10.1017/CBO9780511535581
https://doi.org/10.1093/petrology/27.3.745
https://doi.org/10.1016/S0037–0738(02)00285–3
https://doi.org/10.1016/j.quaint.2005.11.029
https://doi.org/10.1016/0009–2541(88)90010–1
https://doi.org/10.1029/95RG01302
http://dx.doi.org/10.1016/b0–08–043751–6/03016–4
https://doi.org/10.1016/0016–7037(68)90050–1
https://doi.org/10.1016/S0301–9268(96)00005–8
https://doi.org/10.1002/gj.3350210116
https://doi.org/10.1016/j.chemgeo.2013.07.014
https://doi.org/10.1016/0040–1951(86)90197–6
References (Ukraine): Abbasov, O. R. (2009). Distribution regularities of
shales of Paleogene–Miocene sediments in
Gobustan (Abstract of PhD thesis … on PhD in
Earth Sciences). 26.11.09 / O. R. Abbasov
[Institute of Geology and Geophysics, Azerbaijan
National Academy of Sciences], Baku.
Abbasov, O. R. (2015). Oil shale of Azerbaijan:
geology, geochemistry and probable reserves.
International Journal of Research Studies in
Science, Engineering and Technology, 2(9), 31–37.
Abbasov, O. R. (2016). Geological and geochemical
properties of oil shale in Azerbaijan and
petroleum potential of deep-seated Eocene-
Miocene deposits. European journal of natural
history, 2, 31–40.
Abbasov, O. R. (2016). Distribution regularities of oil
shale in Azerbaijan. ISJ Theoretical & Applied
Science, 3(35), 165–171. doi: http://dx.doi.org/10.15863/TAS.2016.03.35.28
Abbasov, O. R. (2017). Distribution regularities and
geochemistry of oil shales in Azerbaijan. Mineral
resources of Ukraine, 2, 22–30.
Abbasov, O. R., Baloglanov, E. E. & Akhundov, R. V. (2015). Organic compounds in ejected rocks of
mud volcanoes as geological and geochemical
indicators: a study from Shamakhi-Gobustan
region (Azerbaijan). Azerbaijan, Baku: International
Multidissiplinar Forum “Academic Science Week-2015”.
Abbasov, O. R., Mamedova, A. N., Huseynov, A. R.
& Baloglanov, E. E. (2013). Some new data of
geochemical researches of combustible slates of
Azerbaijan. Geology, geophysics and development
of oil and gas fields, 2, 32–35.
Abdullayev, R. N., Mustafayev, M. A., Samedova,
R. A., Shafiyev, Kh. I. & Memedov, M. N. (1991). Petrology of the magmatic complexes of
the southern slope of the Greater Caucasus
(Vandam zone). Baku: Publishing house “Elm”.
Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
Mammadova, A. N. (2015). Prospects of using of
Azerbaijan oil shale. Proceedings of the
Azerbaijan National Academy of Sciences, 2 (1), 43–47.
Aliyev, Ad. A. & Abbasov, O. R. (2016). Alternative
fuel and energy resources of Azerbaijan.
International Azerbaijan Journal, 2 (80), 56–62.
Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
Mammadova, A. N. (2018). Genesis and organic
geochemical characteristics of oil shale in eastern
Azerbaijan. SOCAR Proceedings, 3, 4–15. doi: 10.5510/OGP20180300356
Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
Mammadova, A. N. (2018). Organic–geochemical
study of oil shales in Pre–Caspian–Guba
region (Azerbaijan). Mineral resources of
Ukraine, 3, 13–18. https://doi.org/10.31996/mru.2018.3.13–18
Aliyev, Adil & Abbasov, Orhan (2018). Organic
geochemical characteristics of oil shale in
Azerbaijan. Tehran, Iran: The 36th National and
the 3rd International Geosciences Congress.
Аliyev, H. А., Ahmedbeyli, F. S., Ismayilzade, A. J.,
Kengerli, T. N. & Rustamov, M. I. (2005).
Geology of Azerbaijan, (Vol. IV, 506 p.). Baku:
"Nafta-Press" Publishing house.
Aliyev, Ad. A., Aliyev, Ch. S., Feyzullayev, A. A.,
Huseynov D. A., Isayeva M. I., Gadirov F. A.
& Novruzov, N. A. (2015). Geology of
Azerbaijan ,(Vol. II, 341 p.). Baku: Publishing house “Elm”.
Aliyev, Ad. A., Bayramov, A. A., Abbasov, O. R. &
Mammadova, A. N. (2014). Reserves of oil shale
and natural bitumen. National Atlas of the Republic
of Azerbaijan, Map (Scale 1:1000000), 101.
Aliyev, Ad. A. & Bayramov, A. A. (1999). Some
aspects of the tectonics of the Gobustan mud
volcanic zones. Proceedings of ANAS, Earth Sciences, 1, 129-131.
Aliyev, Ad. A., Guliyev, I. S., Dadashev, F. G. &
Rahmanov, R. R. (2015). Atlas of mud volcanoes
in the world. Baku: Publishing house “Nafta–
Press", "Sandro Teti Editore", 361 p.
Alvarez, N. C. & Roser, B. P. (2007). Geochemistry
of black shales from the Lower Cretaceous Paja
Formation, Eastern Cordillera, Colombia: Source
weathering, provenance, and tectonic setting.
Journal of South American Earth Sciences, 23(4), 271–289. https://doi.org/10.1016/j.jsames.2007.02.003
Babayev, Sh. A., Bagmanov, M. A., Aliyeva,
E. H.–M., Alizade, Kh. A., Kengerli, T. N., Latifova,
Y. N. & Zohrabova, V. R. (2015). Geology
of Azerbaijan (Vol. II, 532 p.). Baku: Publishing house “Elm”.
Beard, J. S. (1986). Characteristic mineralogy of arc–
related cumulate gabbros: Implications for the
tectonic setting of gabbroic plutons and for
andesite genesis. Geology, 14(10), 848–851. https://doi.org/10.1130/0091–7613(1986)14<848:CMOACG>2.0.CO;2
Belov, A. A., Burtman, V. S., Zinkevich, V. P.,
Knipper, A. L., Lobkovsky, L. I., Lukianov,
A. V. … & Rachkov, V. S. (1990). Tectonic
layering of Lithosphere and Regional Geological
Investigations. Nauka, Moscow.
Bhatia, M. R. (1983). Plate tectonics and geochemical
composition of sandstones. Journal of Geology, 91(6), 611–627. DOI: 10.1086/628815
Campos Neto, M. D. C., Basei, M. A. S., Assis Janasi,
V. D. & Moraes, R. (2011). Orogen migration
and tectonic setting of the Andrelândia Nappe
system: an Ediacaran western Gondwana collage,
south of São Francisco craton. Journal of South
American Earth Sciences, 32, 393–406. DOI: 10.1016/j.jsames.2011.02.006
Coleman, R. G. (1977). Emplacement and metamorphism
of ophiolites. Rend. Soc. Ital. Mineral.
Petrol., 33 (1): 161–190.
Ershov, A. V., Brunet, M. –F., Nikishin, A. M., Bolotov,
S. N., Nazarevich, B. P. & Korotaev, M. V. (2003). Northern Caucasus basin: Thermal history
and synthesis of subsidence models. Sedimentary
Geology, 156, 95–118, doi: 10.1016/S0037–0738(02)00284–1
Garver, J. I., Royce, P. R. & Smick, T. A. (1996).
Chromium and nickel in shale of the Taconic
foreland: a case study for the provenance of fine–
gained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100-106. https://doi.org/10.1306/D42682C5–2B26–11D7–8648000102C1865D
Gill, James. (1981). Orogenic Andesites and Plate
Tectonics. Springer. 10.1007/978–3–642–68012–0
Hayashi, K. I., Fujisawa, H., Holland, H. D. &
Ohmoto, H. (1997). Geochemistry of ~1.9 Ga
Sedimentary Rocks from Northeastern Labrador,
Canada. Geochimica et Cosmochimica Acta,61(19), 4115–4137. doi:10.1016/s0016–7037(97)00214–7
Hiroaki, Ishiga & Kaori, Dozen. (1997). Geochemical
indications of provenance change as recorded in
Miocene shales: opening of the Japan Sea, San'in
region, southwest Japan. Marine Geology, 144(1–3), 211–228. https://doi.org/10.1016/S0025–3227(97)00104–7
Holland H. D. (1984). The chemical evolution of
atmosphere and oceans. Princeton Univ. Press, Princeton N.J.
Irvine, T. N. & Baragar, W. R. A. (1971). Aguide to
the chemical classification of the common
volcanic rocks. Canadian Journal of Earth
Sciences, 8(5), 523–548. https://doi.org/10.1139/e71–055
J. Barry Maynard, Renzo Valloni & Ho–Shing Yu.(1982). Composition of modern deep–sea sands
from arc–related basins. Geological Society,
London, Special Publications, 10, 551–561. https://doi.org/10.1144/GSL.SP.1982.010.01.36
J. Brendan Murphy. (2000). Tectonic influence on
sedimentation along the southern flank of the late
Paleozoic Magdalen basin in the Canadian
Appalachians: Geochemical and isotopic
constraints on the Horton Group in the St. Marys
basin, Nova Scotia GSA Bulletin, 112(7), 997–1011. https://doi.org/10.1130/0016–7606(2000)112<997:TIOSAT>2.0.CO;2
Kalsbeek, F. & Frei, Robert. (2010). Geochemistry of
Precambrian sedimentary rocks used to solve
stratigraphical problems: An example from the
Neoproterozoic Volta basin, Ghana. In: Precambrian
Research, 176 (1–4), 65–76. https://doi.org/10.1016/j.precamres.2009.10.004
Kent C. Condie. (1997). Plate Tectonics and Crustal
Evolution (Fourth Edition). Great Britain.
Butterworth–Heinemann. https://doi.org/10.1016/B978–0–7506–3386–4.X5000–9
Khain, V. E. (1950). Geotectonic development of the
south–eastern Caucasus.
Khain, V. E. (1994). Geology of the Northern Eurasia
(USSR). Second Part of the Geology of the USSR.
Phanerozoic Fold Belts and Young Platforms.
Gebru¨der Borntraeger, Berlin.
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le
Bas, M. J., Bonin, B., Bateman … Woolley, A. R. (2002). Igneous Rocks: A Classifi cation and
Glossary of Terms, Recommenda–tions of the
International Union of Geological Sciences,
Subcommission of the Systematics of Igneous
Rocks. Cambridge, UK: Cambridge University
Press. https://doi.org/10.1017/CBO9780511535581
Le Bas, M. J., Le Maitre, R. W., Streckeisen A. &
Zanettin B. (1986). A chemical classifi cation of
volcanic rocks based on the total alkali–silica
diagram. Journal of Petrology, 27, 745–750.
https://doi.org/10.1093/petrology/27.3.745
Marie–Françoise Brunet, Maxim V. Korotaev, Andrei
V. Ershov & Anatoly M. Nikishin. (2003). The
South Caspian Basin: a review of its evolution
from subsidence modelling. Sedimentary
Geology, 156, 119–148. https://doi.org/10.1016/S0037–0738(02)00285–3
Milanovsky, E. E. (1991). Geology of the USSR. Part 3 Moscow Univ. Press, Moscow.
Müller, D. & Groves, D. I. (2019). Potassic igneous
rocks and associated gold–copper mineralization (5th ed.). Mineral Resource Reviews. Springer–
Verlag Heidelberg. 10.1007/BFb0017712
P. Huntsman-Mapila, S. Ringrose, A. W. Mackay,
W. S. Downey, M. Modisi, S. H. Coetzee, Jean-
Jacques Tiercelin, A. B. Kampunzu & C. Vanderpost. (2006). Use of the geochemical and
biological sedimentary record in establishing
palaeoenvironments and climate change in the
Lake Ngami basin. NW Botswana, 148(1), 51–64. https://doi.org/10.1016/j.quaint.2005.11.029
Roser, B. P. & Korsch, R. J. (1986). Determination of
tectonic setting sandstone–mudstone suites using
SiO2 content and K2O/Na2O ratio. Journal of
Geology, 94(5), 635–650.
Roser, B. P. & Korsch, R. J. (1988). Provenance
signatures of sandstone–mudstone suites determined
using discriminant function analysis of major–
element data. Chemical Geology, 67, 119–139. https://doi.org/10.1016/0009–2541(88)90010–1
Rudnick, R. L. & Fountain, D. M. (1995). Nature and
composition of the continental crust – a lower
crustal perspective. Reviews in Geophysics, 33, 267–309. https://doi.org/10.1029/95RG01302
Rudnick, R. L. & Gao, S. (2003). Composition of the
Continental Crust. The Crust: Treatise on Geochemistry,
Elsevier–Pergamum, Oxford. http://dx.doi.org/10.1016/b0–08–043751–6/03016–4
Rustamov M. I. (2005). South Caspian Basin ‒ geodynimc
events and processes. Baku: Nafta–Press.
Rustamov, M. I. (2008). Geodynamics and magmatism
of the Caspian–Caucasian segment of the
Mediterranean belt in the Phanerozoic (Abstract
of science doctor thesis … on doctor science in
Earth Sciences). 07.05.2008. Institute of Geology
and Geophysics, Azerbaijan National Academy of
Sciences, Baku.
Rustamov M. I. (2015). Main indicators of the
collisional geodynamics of Zagros–Caucasian
segment of Mediterranean belt. Proceedings of
the Azerbaijan National Academy of Sciences,
Earth Sciences, 1, 3–14.
Shaw, D. M. (1968). A review of K–Rb fractionation
trends by covariance analysis. Geochim.
Cosmochim. Acta, 32, 573–601. https://doi.org/10.1016/0016–7037(68)90050–1
Shikhalibeyli, E. Sh. (1967). Geological structure and
history of the tectonic development of the eastern
part of the Lesser Caucasus. Baku: Publishing
house "Academy of Sciences" USSR.
Sugitani, K., Horiuchi, Y., Adachi, M. & Sugisaki, R.
(1996). Anomalously low Al2O3/TiO2 values of
Archaean chertsfrom the Pilbara Block, Western
Australia—possible evidence of extensive
chemical weathering on the early earth.
Precambrian Res., 80, 49–76. https://doi.org/10.1016/S0301–9268(96)00005–8
Taylor, S. R. & McLennan, S. M. (1985). The
continental crust: its composition and evolution.
Oxford: Blackwell. https://doi.org/10.1002/gj.3350210116
Verma, S. P. & Armstrong–Altrin, J. S. (2013). New
multi–dimensional diagrams for tectonic discrimination
of siliciclastic sediments and their application
to Precambrian basins. Chemical Geology, 355, 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014
Zonenshain, L. P. & Le Pichon, X. (1986). Deep basins of
the Black Sea and Caspian Sea as remnants of Mesozoic
back–arc basins. Tectonophysics, 123, 181–211. https://doi.org/10.1016/0040–1951(86)90197–6
Ziegler, P. A., & Cavazza, W. (Eds.). (2001).
Mesozoic and Cenozoic evolution of the Scythian
Platform –Black–Sea – Caucasus Peri–Tethys
Memoir 6: Peri–Tethyan Rift. Wrench Basins and
Passive Margins. Me´m. Mus. natn. Hist. nat., Paris.
References (International): Abbasov, O. R. (2009). Distribution regularities of
shales of Paleogene–Miocene sediments in
Gobustan (Abstract of PhD thesis … on PhD in
Earth Sciences). 26.11.09, O. R. Abbasov
[Institute of Geology and Geophysics, Azerbaijan
National Academy of Sciences], Baku.
Abbasov, O. R. (2015). Oil shale of Azerbaijan:
geology, geochemistry and probable reserves.
International Journal of Research Studies in
Science, Engineering and Technology, 2(9), 31–37.
Abbasov, O. R. (2016). Geological and geochemical
properties of oil shale in Azerbaijan and
petroleum potential of deep-seated Eocene-
Miocene deposits. European journal of natural
history, 2, 31–40.
Abbasov, O. R. (2016). Distribution regularities of oil
shale in Azerbaijan. ISJ Theoretical & Applied
Science, 3(35), 165–171. doi: http://dx.doi.org/10.15863/TAS.2016.03.35.28
Abbasov, O. R. (2017). Distribution regularities and
geochemistry of oil shales in Azerbaijan. Mineral
resources of Ukraine, 2, 22–30.
Abbasov, O. R., Baloglanov, E. E. & Akhundov, R. V. (2015). Organic compounds in ejected rocks of
mud volcanoes as geological and geochemical
indicators: a study from Shamakhi-Gobustan
region (Azerbaijan). Azerbaijan, Baku: International
Multidissiplinar Forum "Academic Science Week-2015".
Abbasov, O. R., Mamedova, A. N., Huseynov, A. R.
& Baloglanov, E. E. (2013). Some new data of
geochemical researches of combustible slates of
Azerbaijan. Geology, geophysics and development
of oil and gas fields, 2, 32–35.
Abdullayev, R. N., Mustafayev, M. A., Samedova,
R. A., Shafiyev, Kh. I. & Memedov, M. N. (1991). Petrology of the magmatic complexes of
the southern slope of the Greater Caucasus
(Vandam zone). Baku: Publishing house "Elm".
Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
Mammadova, A. N. (2015). Prospects of using of
Azerbaijan oil shale. Proceedings of the
Azerbaijan National Academy of Sciences, 2 (1), 43–47.
Aliyev, Ad. A. & Abbasov, O. R. (2016). Alternative
fuel and energy resources of Azerbaijan.
International Azerbaijan Journal, 2 (80), 56–62.
Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
Mammadova, A. N. (2018). Genesis and organic
geochemical characteristics of oil shale in eastern
Azerbaijan. SOCAR Proceedings, 3, 4–15. doi: 10.5510/OGP20180300356
Aliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
Mammadova, A. N. (2018). Organic–geochemical
study of oil shales in Pre–Caspian–Guba
region (Azerbaijan). Mineral resources of
Ukraine, 3, 13–18. https://doi.org/10.31996/mru.2018.3.13–18
Aliyev, Adil & Abbasov, Orhan (2018). Organic
geochemical characteristics of oil shale in
Azerbaijan. Tehran, Iran: The 36th National and
the 3rd International Geosciences Congress.
Aliyev, H. A., Ahmedbeyli, F. S., Ismayilzade, A. J.,
Kengerli, T. N. & Rustamov, M. I. (2005).
Geology of Azerbaijan, (Vol. IV, 506 p.). Baku:
"Nafta-Press" Publishing house.
Aliyev, Ad. A., Aliyev, Ch. S., Feyzullayev, A. A.,
Huseynov D. A., Isayeva M. I., Gadirov F. A.
& Novruzov, N. A. (2015). Geology of
Azerbaijan ,(Vol. II, 341 p.). Baku: Publishing house "Elm".
Aliyev, Ad. A., Bayramov, A. A., Abbasov, O. R. &
Mammadova, A. N. (2014). Reserves of oil shale
and natural bitumen. National Atlas of the Republic
of Azerbaijan, Map (Scale 1:1000000), 101.
Aliyev, Ad. A. & Bayramov, A. A. (1999). Some
aspects of the tectonics of the Gobustan mud
volcanic zones. Proceedings of ANAS, Earth Sciences, 1, 129-131.
Aliyev, Ad. A., Guliyev, I. S., Dadashev, F. G. &
Rahmanov, R. R. (2015). Atlas of mud volcanoes
in the world. Baku: Publishing house "Nafta–
Press", "Sandro Teti Editore", 361 p.
Alvarez, N. C. & Roser, B. P. (2007). Geochemistry
of black shales from the Lower Cretaceous Paja
Formation, Eastern Cordillera, Colombia: Source
weathering, provenance, and tectonic setting.
Journal of South American Earth Sciences, 23(4), 271–289. https://doi.org/10.1016/j.jsames.2007.02.003
Babayev, Sh. A., Bagmanov, M. A., Aliyeva,
E. H.–M., Alizade, Kh. A., Kengerli, T. N., Latifova,
Y. N. & Zohrabova, V. R. (2015). Geology
of Azerbaijan (Vol. II, 532 p.). Baku: Publishing house "Elm".
Beard, J. S. (1986). Characteristic mineralogy of arc–
related cumulate gabbros: Implications for the
tectonic setting of gabbroic plutons and for
andesite genesis. Geology, 14(10), 848–851. https://doi.org/10.1130/0091–7613(1986)14<848:CMOACG>2.0.CO;2
Belov, A. A., Burtman, V. S., Zinkevich, V. P.,
Knipper, A. L., Lobkovsky, L. I., Lukianov,
A. V. … & Rachkov, V. S. (1990). Tectonic
layering of Lithosphere and Regional Geological
Investigations. Nauka, Moscow.
Bhatia, M. R. (1983). Plate tectonics and geochemical
composition of sandstones. Journal of Geology, 91(6), 611–627. DOI: 10.1086/628815
Campos Neto, M. D. C., Basei, M. A. S., Assis Janasi,
V. D. & Moraes, R. (2011). Orogen migration
and tectonic setting of the Andrelândia Nappe
system: an Ediacaran western Gondwana collage,
south of São Francisco craton. Journal of South
American Earth Sciences, 32, 393–406. DOI: 10.1016/j.jsames.2011.02.006
Coleman, R. G. (1977). Emplacement and metamorphism
of ophiolites. Rend. Soc. Ital. Mineral.
Petrol., 33 (1): 161–190.
Ershov, A. V., Brunet, M. –F., Nikishin, A. M., Bolotov,
S. N., Nazarevich, B. P. & Korotaev, M. V. (2003). Northern Caucasus basin: Thermal history
and synthesis of subsidence models. Sedimentary
Geology, 156, 95–118, doi: 10.1016/S0037–0738(02)00284–1
Garver, J. I., Royce, P. R. & Smick, T. A. (1996).
Chromium and nickel in shale of the Taconic
foreland: a case study for the provenance of fine–
gained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100-106. https://doi.org/10.1306/D42682C5–2B26–11D7–8648000102C1865D
Gill, James. (1981). Orogenic Andesites and Plate
Tectonics. Springer. 10.1007/978–3–642–68012–0
Hayashi, K. I., Fujisawa, H., Holland, H. D. &
Ohmoto, H. (1997). Geochemistry of ~1.9 Ga
Sedimentary Rocks from Northeastern Labrador,
Canada. Geochimica et Cosmochimica Acta,61(19), 4115–4137. doi:10.1016/s0016–7037(97)00214–7
Hiroaki, Ishiga & Kaori, Dozen. (1997). Geochemical
indications of provenance change as recorded in
Miocene shales: opening of the Japan Sea, San'in
region, southwest Japan. Marine Geology, 144(1–3), 211–228. https://doi.org/10.1016/S0025–3227(97)00104–7
Holland H. D. (1984). The chemical evolution of
atmosphere and oceans. Princeton Univ. Press, Princeton N.J.
Irvine, T. N. & Baragar, W. R. A. (1971). Aguide to
the chemical classification of the common
volcanic rocks. Canadian Journal of Earth
Sciences, 8(5), 523–548. https://doi.org/10.1139/e71–055
J. Barry Maynard, Renzo Valloni & Ho–Shing Yu.(1982). Composition of modern deep–sea sands
from arc–related basins. Geological Society,
London, Special Publications, 10, 551–561. https://doi.org/10.1144/GSL.SP.1982.010.01.36
J. Brendan Murphy. (2000). Tectonic influence on
sedimentation along the southern flank of the late
Paleozoic Magdalen basin in the Canadian
Appalachians: Geochemical and isotopic
constraints on the Horton Group in the St. Marys
basin, Nova Scotia GSA Bulletin, 112(7), 997–1011. https://doi.org/10.1130/0016–7606(2000)112<997:TIOSAT>2.0.CO;2
Kalsbeek, F. & Frei, Robert. (2010). Geochemistry of
Precambrian sedimentary rocks used to solve
stratigraphical problems: An example from the
Neoproterozoic Volta basin, Ghana. In: Precambrian
Research, 176 (1–4), 65–76. https://doi.org/10.1016/j.precamres.2009.10.004
Kent C. Condie. (1997). Plate Tectonics and Crustal
Evolution (Fourth Edition). Great Britain.
Butterworth–Heinemann. https://doi.org/10.1016/B978–0–7506–3386–4.X5000–9
Khain, V. E. (1950). Geotectonic development of the
south–eastern Caucasus.
Khain, V. E. (1994). Geology of the Northern Eurasia
(USSR). Second Part of the Geology of the USSR.
Phanerozoic Fold Belts and Young Platforms.
Gebru¨der Borntraeger, Berlin.
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le
Bas, M. J., Bonin, B., Bateman … Woolley, A. R. (2002). Igneous Rocks: A Classifi cation and
Glossary of Terms, Recommenda–tions of the
International Union of Geological Sciences,
Subcommission of the Systematics of Igneous
Rocks. Cambridge, UK: Cambridge University
Press. https://doi.org/10.1017/CBO9780511535581
Le Bas, M. J., Le Maitre, R. W., Streckeisen A. &
Zanettin B. (1986). A chemical classifi cation of
volcanic rocks based on the total alkali–silica
diagram. Journal of Petrology, 27, 745–750.
https://doi.org/10.1093/petrology/27.3.745
Marie–Françoise Brunet, Maxim V. Korotaev, Andrei
V. Ershov & Anatoly M. Nikishin. (2003). The
South Caspian Basin: a review of its evolution
from subsidence modelling. Sedimentary
Geology, 156, 119–148. https://doi.org/10.1016/S0037–0738(02)00285–3
Milanovsky, E. E. (1991). Geology of the USSR. Part 3 Moscow Univ. Press, Moscow.
Müller, D. & Groves, D. I. (2019). Potassic igneous
rocks and associated gold–copper mineralization (5th ed.). Mineral Resource Reviews. Springer–
Verlag Heidelberg. 10.1007/BFb0017712
P. Huntsman-Mapila, S. Ringrose, A. W. Mackay,
W. S. Downey, M. Modisi, S. H. Coetzee, Jean-
Jacques Tiercelin, A. B. Kampunzu & C. Vanderpost. (2006). Use of the geochemical and
biological sedimentary record in establishing
palaeoenvironments and climate change in the
Lake Ngami basin. NW Botswana, 148(1), 51–64. https://doi.org/10.1016/j.quaint.2005.11.029
Roser, B. P. & Korsch, R. J. (1986). Determination of
tectonic setting sandstone–mudstone suites using
SiO2 content and K2O/Na2O ratio. Journal of
Geology, 94(5), 635–650.
Roser, B. P. & Korsch, R. J. (1988). Provenance
signatures of sandstone–mudstone suites determined
using discriminant function analysis of major–
element data. Chemical Geology, 67, 119–139. https://doi.org/10.1016/0009–2541(88)90010–1
Rudnick, R. L. & Fountain, D. M. (1995). Nature and
composition of the continental crust – a lower
crustal perspective. Reviews in Geophysics, 33, 267–309. https://doi.org/10.1029/95RG01302
Rudnick, R. L. & Gao, S. (2003). Composition of the
Continental Crust. The Crust: Treatise on Geochemistry,
Elsevier–Pergamum, Oxford. http://dx.doi.org/10.1016/b0–08–043751–6/03016–4
Rustamov M. I. (2005). South Caspian Basin ‒ geodynimc
events and processes. Baku: Nafta–Press.
Rustamov, M. I. (2008). Geodynamics and magmatism
of the Caspian–Caucasian segment of the
Mediterranean belt in the Phanerozoic (Abstract
of science doctor thesis … on doctor science in
Earth Sciences). 07.05.2008. Institute of Geology
and Geophysics, Azerbaijan National Academy of
Sciences, Baku.
Rustamov M. I. (2015). Main indicators of the
collisional geodynamics of Zagros–Caucasian
segment of Mediterranean belt. Proceedings of
the Azerbaijan National Academy of Sciences,
Earth Sciences, 1, 3–14.
Shaw, D. M. (1968). A review of K–Rb fractionation
trends by covariance analysis. Geochim.
Cosmochim. Acta, 32, 573–601. https://doi.org/10.1016/0016–7037(68)90050–1
Shikhalibeyli, E. Sh. (1967). Geological structure and
history of the tectonic development of the eastern
part of the Lesser Caucasus. Baku: Publishing
house "Academy of Sciences" USSR.
Sugitani, K., Horiuchi, Y., Adachi, M. & Sugisaki, R.
(1996). Anomalously low Al2O3/TiO2 values of
Archaean chertsfrom the Pilbara Block, Western
Australia-possible evidence of extensive
chemical weathering on the early earth.
Precambrian Res., 80, 49–76. https://doi.org/10.1016/S0301–9268(96)00005–8
Taylor, S. R. & McLennan, S. M. (1985). The
continental crust: its composition and evolution.
Oxford: Blackwell. https://doi.org/10.1002/gj.3350210116
Verma, S. P. & Armstrong–Altrin, J. S. (2013). New
multi–dimensional diagrams for tectonic discrimination
of siliciclastic sediments and their application
to Precambrian basins. Chemical Geology, 355, 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014
Zonenshain, L. P. & Le Pichon, X. (1986). Deep basins of
the Black Sea and Caspian Sea as remnants of Mesozoic
back–arc basins. Tectonophysics, 123, 181–211. https://doi.org/10.1016/0040–1951(86)90197–6
Ziegler, P. A., & Cavazza, W. (Eds.). (2001).
Mesozoic and Cenozoic evolution of the Scythian
Platform –Black–Sea – Caucasus Peri–Tethys
Memoir 6: Peri–Tethyan Rift. Wrench Basins and
Passive Margins. Me´m. Mus. natn. Hist. nat., Paris.
Content type: Article
Appears in Collections:Геодинаміка. – 2019. – №1(26)

Files in This Item:
File Description SizeFormat 
2019n1__26__Aliyev_A_A-Nature_of_the_provenance_43-59.pdf1.2 MBAdobe PDFView/Open
2019n1__26__Aliyev_A_A-Nature_of_the_provenance_43-59__COVER.png1.61 MBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.