Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45487
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRazno, Maria
dc.date.accessioned2019-10-31T13:21:02Z-
dc.date.available2019-10-31T13:21:02Z-
dc.date.created2019-04-18
dc.date.issued2019-04-18
dc.identifier.citationRazno M. Machine learning text classification model with NLP approach / Maria Razno // Computational Linguistics and Intelligent Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019. — P. 71–73. — (Student section).
dc.identifier.issn2523-4013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45487-
dc.description.abstractThis article describes the relevance of the word processing task that is written in human language by the methods of Machine Learning and NLP approach, that can be used on Python programming language. It also portrays the concept of Machine Learning, its main varieties and the most popular Pythonpackages and libraries for working with text data using Machine Learning methods. The concept of NLP and the most popular python packages are also presented in the article. The machine learning classification model algorithm based on the text processing is introduced in the article. It shows how to use classification machine learning and NLP methods in practice.
dc.format.extent71-73
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Linguistics and Intelligent Systems (2), 2019
dc.relation.urihttps://github.com/cmasch/cnn-text-classification,24/02/2019
dc.subjectMachine learning
dc.subjectPython
dc.subjectPandas
dc.subjectText classification
dc.subjectNLP
dc.subjectNLTK
dc.subjectScikit-learn
dc.subjectArtificial Intelligence
dc.subjectPython Library
dc.subjectDeep Learning Texts
dc.titleMachine learning text classification model with NLP approach
dc.typeArticle
dc.rights.holder© 2019 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.
dc.contributor.affiliationNational Technical University "Kharkiv Polytechnic Institute"
dc.format.pages3
dc.identifier.citationenRazno M. Machine learning text classification model with NLP approach / Maria Razno // Computational Linguistics and Intelligent Systems. — Lviv Politechnic Publishing House, 2019. — Vol 2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019. — P. 71–73. — (Student section).
dc.relation.referencesen1. Langley, P.: Human and machine learning.Machine Learning,1, pp. 243–248 (1986)
dc.relation.referencesen2. Masch, C.: Text classification with Convolution Neural Net-works on Yelp, IMDB & sentence polarity dataset, https://github.com/cmasch/cnn-text-classification,24/02/2019.
dc.relation.referencesen3. Moschitti, A., Basili, R.: Complex Linguistic Features for Text Classification: A Comprehensive Study. In: Lecture Notes in Computer Science vol. 2997, pp. 181-196, Springer Science + Business Media (2004)
dc.citation.journalTitleComputational Linguistics and Intelligent Systems
dc.citation.volume2 : Proceedings of the 3nd International conference, COLINS 2019. Workshop, Kharkiv, Ukraine, April 18-19, 2019
dc.citation.spage71
dc.citation.epage73
dc.coverage.placenameLviv
Appears in Collections:Computational linguistics and intelligent systems. – 2019 р.

Files in This Item:
File Description SizeFormat 
2019v2___Proceedings_of_the_3nd_International_conference_COLINS_2019_Workshop_Kharkiv_Ukraine_April_18-19_2019_Razno_M-Machine_learning_text_classification_71-73.pdf410.08 kBAdobe PDFView/Open
2019v2___Proceedings_of_the_3nd_International_conference_COLINS_2019_Workshop_Kharkiv_Ukraine_April_18-19_2019_Razno_M-Machine_learning_text_classification_71-73__COVER.png293.21 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.