Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45204
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPatrylak, Lyubov
dc.contributor.authorPertko, Oleksandra
dc.date.accessioned2019-06-21T07:57:58Z-
dc.date.available2019-06-21T07:57:58Z-
dc.date.created2018-01-20
dc.date.issued2018-01-20
dc.identifier.citationPatrylak L. Peculiarities of activity renovation of zeolite catalysts coked in hexane cracking / Lyubov Patrylak, Oleksandra Pertko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 538–542.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45204-
dc.description.abstractМетодом дискретно-послідовного мікроокис- нення коксу досліджено початкову активність кислотних цеолітів у крекінзі н-гексану та вплив ступеня регенерації на залишкову активність зразків. Знайдено, що окиснення 5–10 імпульсами кисню належним чином відновлює активність каталізаторів на основі фожазиту та пентасилу, тоді як для морденіту, який має підвищену схильність до блокування ка- нальної структури коксом, такої кількості кисню не достатньо.
dc.description.abstract1The initial activity of acid zeolites in n-hexane cracking and influence of their regeneration depth on residual activity using the method of discrete-consecutive coke micro oxidation have been investigated. It was found that oxidation by 5-10 pulses of oxygen properly reflects the activity of catalysts based on faujasite and pentasil, while for mordenite which has increased susceptibility to blocking of channels by coke, such quantity oxygen is not enough
dc.format.extent538-542
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (12), 2018
dc.relation.urihttps://doi.org/10.1166/apm.2017.1120
dc.relation.urihttps://doi.org/10.1039/C6CY01886F
dc.relation.urihttps://doi.org/10.1016/0021-9517(90)90290-Z
dc.relation.urihttps://doi.org/10.1016/j.molcata.2008.06.014
dc.relation.urihttps://doi.org/10.1080/01614949608006455
dc.relation.urihttps://doi.org/10.1016/S0920-5861(98)00348-4
dc.relation.urihttps://doi.org/10.1260/0263617001493512
dc.relation.urihttps://doi.org/10.3390/molecules22101784
dc.relation.urihttps://doi.org/10.1007/s11237-010-9149-7
dc.relation.urihttps://doi.org/10.3390/catal5010145
dc.relation.urihttps://doi.org/10.1016/S0926-860X(00)00845-0
dc.relation.urihttps://doi.org/10.1007/3829_005
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2006.09.025
dc.relation.urihttps://doi.org/10.1039/C5CS00376H
dc.relation.urihttps://doi.org/10.1007/s11237-009-9086-5
dc.relation.urihttps://doi.org/10.2174/2211544705666160322235846
dc.relation.urihttps://doi.org/10.1016/0021-9517(90)90106-T
dc.subjectкрекінг каталітичний
dc.subjectцеоліти кис- лотні
dc.subjectкарбонові відкладення
dc.subjectрегенерація
dc.subjectcracking catalytic
dc.subjectzeolite acidic
dc.subjectactivity
dc.subjectdeposits carbon
dc.subjectregeneration
dc.titlePeculiarities of activity renovation of zeolite catalysts coked in hexane cracking
dc.title.alternativeОсобливості відновлення активності цеолітних каталізаторів закоксованих в крекінзі гексану
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder©Patrylak L., Pertko O., 2018
dc.contributor.affiliationInstitute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
dc.format.pages5
dc.identifier.citationenPatrylak L. Peculiarities of activity renovation of zeolite catalysts coked in hexane cracking / Lyubov Patrylak, Oleksandra Pertko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 4. — P. 538–542.
dc.relation.references[1]Wojciechowski B., Corma A.: Catalytic Cracking: Catalysis, Chemistry, and Kinetics. Marcel Dekker, Inc. New York 1986.
dc.relation.references[2] Ocelli M., O'Connor P. (Eds.): Fluid Cracking Catalysts. Marcel Dekker, Inc. New York 1997.
dc.relation.references[3] Nishimura Y.: Adv. Porous. Mater., 2017, 5, 17.https://doi.org/10.1166/apm.2017.1120
dc.relation.references[4] Corma A., Corresa E., Mathieu Y. et al.: Catal. Sci. Technol.,2017, 7, 12. https://doi.org/10.1039/C6CY01886F
dc.relation.references[5] Groten W., Wojciechowski B.: J. Catal., 1990, 122, 362.https://doi.org/10.1016/0021-9517(90)90290-Z
dc.relation.references[6] Cerqueira H., Caeiro G., Costa L., Ramôa Ribeiro F.: J. Mol. Catal. A, 2008, 292, 1.https://doi.org/10.1016/j.molcata.2008.06.014
dc.relation.references[7] Cumming K., Wojciechowski B.: Sci. Eng., 1996, 38, 101.https://doi.org/10.1080/01614949608006455
dc.relation.references[8] Den Hollander M., MakkeeM., Moulijn J.: Catal. Today, 1998,46, 27. https://doi.org/10.1016/S0920-5861(98)00348-4
dc.relation.references[9] Patrylak L.: Adsorp. Sci. Technol., 2000, 18, 399.https://doi.org/10.1260/0263617001493512
dc.relation.references[10] Gusev A., Psarras A., Triantafyllidis K. et al.:Molecules, 2017,22, 1784. https://doi.org/10.3390/molecules22101784
dc.relation.references[11] Patrylak K., Patrylak L., Ivanenko V. et al.: Theoret. Exp.Chem., 2010, 46, 256. https://doi.org/10.1007/s11237-010-9149-7
dc.relation.references[12] ArgyleM., Bartholomew C.: Catalysts, 2015, 5, 145.https://doi.org/10.3390/catal5010145
dc.relation.references[13] Guisnet M., Magnoux P.: Appl. Catal. A, 2001, 212, 83.https://doi.org/10.1016/S0926-860X(00)00845-0
dc.relation.references[14] Bauer F., Karge H.:Mol. Sieves., 2007, 5, 249.https://doi.org/10.1007/3829_005.
dc.relation.references[15] Gil B., Mierzynska K., SzczerbinskaM., Datka J.:Micropor. Mesopor. Mater., 2007, 99, 328.https://doi.org/10.1016/j.micromeso.2006.09.025 Lviv Polytechnic
dc.relation.references[16] Vogt E., Weckhuysen B.: Chem. Soc. Rev., 2015, 44, 7342.https://doi.org/10.1039/C5CS00376H
dc.relation.references[17] Ivanenko V., Voloshyna Yu., OkhrimenkoM.: Theoret. Exp. Chem., 2009, 45, 198. https://doi.org/10.1007/s11237-009-9086-5
dc.relation.references[18] Patrylak К., Patrylak L., Pertko O. et al.: Curr. Catal., 2016, 5,108. https://doi.org/10.2174/2211544705666160322235846
dc.relation.references[19] OkhrimenkoM.: PhD thesis, Institute of Bioorganic Chemistry, Kyiv 2005.
dc.relation.references[20] Umansky B., Hall W.: J. Catal., 1990, 124, 97.https://doi.org/10.1016/0021-9517(90)90106-T
dc.relation.referencesen[1]Wojciechowski B., Corma A., Catalytic Cracking: Catalysis, Chemistry, and Kinetics. Marcel Dekker, Inc. New York 1986.
dc.relation.referencesen[2] Ocelli M., O'Connor P. (Eds.): Fluid Cracking Catalysts. Marcel Dekker, Inc. New York 1997.
dc.relation.referencesen[3] Nishimura Y., Adv. Porous. Mater., 2017, 5, 17.https://doi.org/10.1166/apm.2017.1120
dc.relation.referencesen[4] Corma A., Corresa E., Mathieu Y. et al., Catal. Sci. Technol.,2017, 7, 12. https://doi.org/10.1039/P.6CY01886F
dc.relation.referencesen[5] Groten W., Wojciechowski B., J. Catal., 1990, 122, 362.https://doi.org/10.1016/0021-9517(90)90290-Z
dc.relation.referencesen[6] Cerqueira H., Caeiro G., Costa L., Ramôa Ribeiro F., J. Mol. Catal. A, 2008, 292, 1.https://doi.org/10.1016/j.molcata.2008.06.014
dc.relation.referencesen[7] Cumming K., Wojciechowski B., Sci. Eng., 1996, 38, 101.https://doi.org/10.1080/01614949608006455
dc.relation.referencesen[8] Den Hollander M., MakkeeM., Moulijn J., Catal. Today, 1998,46, 27. https://doi.org/10.1016/S0920-5861(98)00348-4
dc.relation.referencesen[9] Patrylak L., Adsorp. Sci. Technol., 2000, 18, 399.https://doi.org/10.1260/0263617001493512
dc.relation.referencesen[10] Gusev A., Psarras A., Triantafyllidis K. et al.:Molecules, 2017,22, 1784. https://doi.org/10.3390/molecules22101784
dc.relation.referencesen[11] Patrylak K., Patrylak L., Ivanenko V. et al., Theoret. Exp.Chem., 2010, 46, 256. https://doi.org/10.1007/s11237-010-9149-7
dc.relation.referencesen[12] ArgyleM., Bartholomew C., Catalysts, 2015, 5, 145.https://doi.org/10.3390/catal5010145
dc.relation.referencesen[13] Guisnet M., Magnoux P., Appl. Catal. A, 2001, 212, 83.https://doi.org/10.1016/S0926-860X(00)00845-0
dc.relation.referencesen[14] Bauer F., Karge H.:Mol. Sieves., 2007, 5, 249.https://doi.org/10.1007/3829_005.
dc.relation.referencesen[15] Gil B., Mierzynska K., SzczerbinskaM., Datka J.:Micropor. Mesopor. Mater., 2007, 99, 328.https://doi.org/10.1016/j.micromeso.2006.09.025 Lviv Polytechnic
dc.relation.referencesen[16] Vogt E., Weckhuysen B., Chem. Soc. Rev., 2015, 44, 7342.https://doi.org/10.1039/P.5CS00376H
dc.relation.referencesen[17] Ivanenko V., Voloshyna Yu., OkhrimenkoM., Theoret. Exp. Chem., 2009, 45, 198. https://doi.org/10.1007/s11237-009-9086-5
dc.relation.referencesen[18] Patrylak K., Patrylak L., Pertko O. et al., Curr. Catal., 2016, 5,108. https://doi.org/10.2174/2211544705666160322235846
dc.relation.referencesen[19] OkhrimenkoM., PhD thesis, Institute of Bioorganic Chemistry, Kyiv 2005.
dc.relation.referencesen[20] Umansky B., Hall W., J. Catal., 1990, 124, 97.https://doi.org/10.1016/0021-9517(90)90106-T
dc.citation.journalTitleChemistry & Chemical Technology
dc.citation.volume12
dc.citation.issue4
dc.citation.spage538
dc.citation.epage542
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2018. – Vol. 12, No. 4

Files in This Item:
File Description SizeFormat 
2018v12n4_Patrylak_L-Peculiarities_of_activity_538-542.pdf227.26 kBAdobe PDFView/Open
2018v12n4_Patrylak_L-Peculiarities_of_activity_538-542__COVER.png541.23 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.