DC Field | Value | Language |
dc.contributor.author | Kuntyi, Orest | |
dc.contributor.author | Shepida, Mariana | |
dc.contributor.author | Sus, Lubov | |
dc.contributor.author | Zozulya, Galyna | |
dc.contributor.author | Korniy, Serhiy | |
dc.date.accessioned | 2019-06-20T11:19:52Z | - |
dc.date.available | 2019-06-20T11:19:52Z | - |
dc.date.created | 2018-01-20 | |
dc.date.issued | 2018-01-20 | |
dc.identifier.citation | Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions / Orest Kuntyi, Mariana Shepida, Lubov Sus, Galyna Zozulya, Serhiy Korniy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 3. — P. 305–309. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/45187 | - |
dc.description.abstract | Наведено результати досліджень процесу
осадження нанорозмірних частинок срібла, паладію та золота
на поверхню кремнію в середовищі DMSO та DMF. Описано
вплив молекул органічних апротонних розчинників на
геометрію металевих частинок та їх розподіл на підкладці.
Показано, що розчини стійких комплексів металів ([Ag(CN)2]-,
[AuCl4]-) є головним чинником формування дискретних
наночастинок з невеликим діапазоном за розмірами та
рівномірним розподілом по поверхні підкладки, а також
наноструктурних плівок. Встановлено, що з підвищенням
температури від 313 до 343 К спостерігається зміна
структури осаду золота від плівкової до дисперсної, що
зумовлено значним збільшенням швидкості електрогенеруючої
реакції на мікроанодах кремнієвої поверхні та десорбцією
молекул органічних розчинників із металевих зародків. | |
dc.description.abstract | The investigation results of silver, palladium
and gold nanoscale particles deposition on the silicon
surface in the DMSO and DMF media are presented. The
influence of organic aprotic solvents on the geometry of
metal particles and their distribution on the substrate is
described. It is shown that solutions of stable metal
complexes ([Ag (CN)2]–, [AuCl4]–) are the main factor in
the formation of discrete nanoparticles with a small range
of sizes and uniform distribution along the substrate
surface, as well as nanostructured films. It has been
established that the increase in temperature from 313 to
343 K changes the structure of the gold deposit from the
film to the dispersed one, occurred due to a significant
increase in the rate of the electrogenerating reaction on the
silicon surface microanodes and desorption of organic
solvents molecules from the metal nuclei. | |
dc.format.extent | 305-309 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (12), 2018 | |
dc.relation.uri | https://doi.org/10.1149/05052.0143ecst | |
dc.relation.uri | https://doi.org/10.1021/acsami.6b09518 | |
dc.relation.uri | https://doi.org/10.1016/j.snb.2016.03.018 | |
dc.relation.uri | https://doi.org/10.1088/0022-3727/46/27/275303 | |
dc.relation.uri | https://doi.org/10.1149/2.0261614jes | |
dc.relation.uri | https://doi.org/10.1021/nn900685a | |
dc.relation.uri | https://doi.org/10.1149/06939.0059ecst | |
dc.relation.uri | https://doi.org/10.1149/1.3699373 | |
dc.relation.uri | https://doi.org/10.1021/am200144k | |
dc.relation.uri | https://doi.org/10.1149/05306.0099ecst | |
dc.relation.uri | https://doi.org/10.1016/0040-6090(95)07009-5 | |
dc.relation.uri | https://doi.org/10.1016/S1388-2481(03)00146-2 | |
dc.relation.uri | https://doi.org/10.1016/j.solener.2005.10.011 | |
dc.relation.uri | https://doi.org/10.1039/C5CC07474F | |
dc.relation.uri | https://doi.org/10.1186/1556-276X-7-352 | |
dc.relation.uri | https://doi.org/10.1149/06902.0179ecst | |
dc.relation.uri | https://doi.org/10.1149/1.2907155 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2010.12.078 | |
dc.relation.uri | https://doi.org/10.3390/catal7030080 | |
dc.relation.uri | https://doi.org/10.1039/c3nr01244a | |
dc.relation.uri | https://doi.org/10.1016/j.hydromet.2007.07.005 | |
dc.subject | ґальванічне заміщення | |
dc.subject | срібло | |
dc.subject | паладій | |
dc.subject | золото | |
dc.subject | кремній | |
dc.subject | DMF | |
dc.subject | DMSO | |
dc.subject | galvanic substitution | |
dc.subject | silver | |
dc.subject | palladium | |
dc.subject | gold | |
dc.subject | silicon | |
dc.subject | DMF | |
dc.subject | DMSO | |
dc.title | Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions | |
dc.title.alternative | Модифікація поверхні кремнію нано-структурами срібла золота і паладію ґальванічним заміщенням у DMSO і DMF | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2018 | |
dc.rights.holder | ©Kuntyi O., Shepida M., Sus L., Zozulya G., Korniy S., 2018 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine | |
dc.format.pages | 5 | |
dc.identifier.citationen | Modification of silicon surface with silver, gold and palladium nanostructures via galvanic substitution in DMSO and DMF solutions / Orest Kuntyi, Mariana Shepida, Lubov Sus, Galyna Zozulya, Serhiy Korniy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 3. — P. 305–309. | |
dc.relation.references | [1] Ego T., Hagihara T.,Moriia Y. et al.: ECS Trans., 2013, 50, 143.https://doi.org/10.1149/05052.0143ecst | |
dc.relation.references | [2] Kim T., Braun G., She Z. et al.: ACS Appl. Mater. Interfaces.,2016, 8, 30449. https://doi.org/10.1021/acsami.6b09518 | |
dc.relation.references | [3] Ensafi A., Rezaloo F., Rezaei B.: Sensor. Actuat. B-Chem.,2016, 231, 239. https://doi.org/10.1016/j.snb.2016.03.018 | |
dc.relation.references | [4] Lahiri A., Wen R., Kuimalee S. et al.: Lett. J. Appl. Phys., 2013,46, 275303. https://doi.org/10.1088/0022-3727/46/27/275303 | |
dc.relation.references | [5] Itasaka H., Nishi M., Shimizu M., Hirao K.: J. Electrochem. Society, 2016, 163, D743. https://doi.org/10.1149/2.0261614jes | |
dc.relation.references | [6] Sayed S., Wang F., Malac M. et al.: ASC Nano, 2009, 3, 2809.https://doi.org/10.1021/nn900685a | |
dc.relation.references | [7] Yamada N., Atsushiba H., Sakamoto S. et al.: ECS Trans., 2015,69, 59. https://doi.org/10.1149/06939.0059ecst | |
dc.relation.references | [8] Raygani A., Magagnin L.: ECS Transactions, 2012, 41, 3-8.https://doi.org/10.1149/1.3699373 | |
dc.relation.references | [9] Gutes A., Carraro C., Maboudian R.: ACS Appl. Mater. Interfaces, 2011, 3, 1581. https://doi.org/10.1021/am200144k | |
dc.relation.references | [10] Yae S., Enomoto M., Atsushiba H. et al.: ECS Transactions,2013, 53, 99. https://doi.org/10.1149/05306.0099ecst | |
dc.relation.references | [11] Gorostiza P., Servat J., Morante J., Sanz F.: Thin Solid Films,1996, 275, 12. https://doi.org/10.1016/0040-6090(95)07009-5 | |
dc.relation.references | [12] Yae S., Kawamoto Y., Tanaka H. et al.: Electrochem. Comm.,2003, 5, 632. https://doi.org/10.1016/S1388-2481(03)00146-2 | |
dc.relation.references | [13] Yae S., Kobayashi T., Kawagishi T. et al.: Solar Energy, 2006,80, 701. https://doi.org/10.1016/j.solener.2005.10.011 | |
dc.relation.references | [14] Wei Q., Shi Y., Sun K-Q., Xu B-Q.: Chem. Comm., 2016, 52,3026. https://doi.org/10.1039/C5CC07474F | |
dc.relation.references | [15] Yae S., Morii Y., Fukumuro N., Matsuda H.: Nanoscale Res. Lett., 2012, 7, 352. https://doi.org/10.1186/1556-276X-7-352 | |
dc.relation.references | [16] Sadakane D., Yamakawa K., Fukumuro N., Yae S.: ECS Transactions, 2015, 69, 179. https://doi.org/10.1149/06902.0179ecst | |
dc.relation.references | [17] daRosa C., Maboudian R., Iglesia E.: J. Electrochem. Society,2008, 155, E70. https://doi.org/10.1149/1.2907155 | |
dc.relation.references | [18] Scudiero L., Fasasi A., Griffiths P.: Applied Surface Science,2011, 257, 4422. https://doi.org/10.1016/j.apsusc.2010.12.078 | |
dc.relation.references | [19] Papaderakis A., Mintsouli I., Georgieva J., Sotiropoulos S.: Catalysts, 2017, 7, 80. https://doi.org/10.3390/catal7030080 | |
dc.relation.references | [20] Polavarapu L., Liz-Marz´an L.: Nanoscale, 2013, 5, 4355.https://doi.org/10.1039/c3nr01244a | |
dc.relation.references | [21] Kuntyi O.:Mater. Sci., 2006, 42, 681. | |
dc.relation.references | [22] Dobrovets’ka O., Kuntyi O., Zozulya G. et al.: Mater. Sci.,2015, 51, 418. | |
dc.relation.references | [23] Kuntyi O., Stakhira P. Cherpak V. et al.: Micro Nano Lett.,2011, 6, 592. | |
dc.relation.references | [24] Zhike Wang, Donghui Chen, Liang Chen.: Hydrometallurgy,2007, 89, 196. https://doi.org/10.1016/j.hydromet.2007.07.005 | |
dc.relation.references | [25] Kuntyi O.: Electrokhimia taMorphologia DispersnykhMetaliv. Vyd-vo LP, Lviv 2008. | |
dc.relation.referencesen | [1] Ego T., Hagihara T.,Moriia Y. et al., ECS Trans., 2013, 50, 143.https://doi.org/10.1149/05052.0143ecst | |
dc.relation.referencesen | [2] Kim T., Braun G., She Z. et al., ACS Appl. Mater. Interfaces.,2016, 8, 30449. https://doi.org/10.1021/acsami.6b09518 | |
dc.relation.referencesen | [3] Ensafi A., Rezaloo F., Rezaei B., Sensor. Actuat. B-Chem.,2016, 231, 239. https://doi.org/10.1016/j.snb.2016.03.018 | |
dc.relation.referencesen | [4] Lahiri A., Wen R., Kuimalee S. et al., Lett. J. Appl. Phys., 2013,46, 275303. https://doi.org/10.1088/0022-3727/46/27/275303 | |
dc.relation.referencesen | [5] Itasaka H., Nishi M., Shimizu M., Hirao K., J. Electrochem. Society, 2016, 163, D743. https://doi.org/10.1149/2.0261614jes | |
dc.relation.referencesen | [6] Sayed S., Wang F., Malac M. et al., ASC Nano, 2009, 3, 2809.https://doi.org/10.1021/nn900685a | |
dc.relation.referencesen | [7] Yamada N., Atsushiba H., Sakamoto S. et al., ECS Trans., 2015,69, 59. https://doi.org/10.1149/06939.0059ecst | |
dc.relation.referencesen | [8] Raygani A., Magagnin L., ECS Transactions, 2012, 41, 3-8.https://doi.org/10.1149/1.3699373 | |
dc.relation.referencesen | [9] Gutes A., Carraro C., Maboudian R., ACS Appl. Mater. Interfaces, 2011, 3, 1581. https://doi.org/10.1021/am200144k | |
dc.relation.referencesen | [10] Yae S., Enomoto M., Atsushiba H. et al., ECS Transactions,2013, 53, 99. https://doi.org/10.1149/05306.0099ecst | |
dc.relation.referencesen | [11] Gorostiza P., Servat J., Morante J., Sanz F., Thin Solid Films,1996, 275, 12. https://doi.org/10.1016/0040-6090(95)07009-5 | |
dc.relation.referencesen | [12] Yae S., Kawamoto Y., Tanaka H. et al., Electrochem. Comm.,2003, 5, 632. https://doi.org/10.1016/S1388-2481(03)00146-2 | |
dc.relation.referencesen | [13] Yae S., Kobayashi T., Kawagishi T. et al., Solar Energy, 2006,80, 701. https://doi.org/10.1016/j.solener.2005.10.011 | |
dc.relation.referencesen | [14] Wei Q., Shi Y., Sun K-Q., Xu B-Q., Chem. Comm., 2016, 52,3026. https://doi.org/10.1039/P.5CC07474F | |
dc.relation.referencesen | [15] Yae S., Morii Y., Fukumuro N., Matsuda H., Nanoscale Res. Lett., 2012, 7, 352. https://doi.org/10.1186/1556-276X-7-352 | |
dc.relation.referencesen | [16] Sadakane D., Yamakawa K., Fukumuro N., Yae S., ECS Transactions, 2015, 69, 179. https://doi.org/10.1149/06902.0179ecst | |
dc.relation.referencesen | [17] daRosa C., Maboudian R., Iglesia E., J. Electrochem. Society,2008, 155, E70. https://doi.org/10.1149/1.2907155 | |
dc.relation.referencesen | [18] Scudiero L., Fasasi A., Griffiths P., Applied Surface Science,2011, 257, 4422. https://doi.org/10.1016/j.apsusc.2010.12.078 | |
dc.relation.referencesen | [19] Papaderakis A., Mintsouli I., Georgieva J., Sotiropoulos S., Catalysts, 2017, 7, 80. https://doi.org/10.3390/catal7030080 | |
dc.relation.referencesen | [20] Polavarapu L., Liz-Marz´an L., Nanoscale, 2013, 5, 4355.https://doi.org/10.1039/P.3nr01244a | |
dc.relation.referencesen | [21] Kuntyi O.:Mater. Sci., 2006, 42, 681. | |
dc.relation.referencesen | [22] Dobrovets’ka O., Kuntyi O., Zozulya G. et al., Mater. Sci.,2015, 51, 418. | |
dc.relation.referencesen | [23] Kuntyi O., Stakhira P. Cherpak V. et al., Micro Nano Lett.,2011, 6, 592. | |
dc.relation.referencesen | [24] Zhike Wang, Donghui Chen, Liang Chen., Hydrometallurgy,2007, 89, 196. https://doi.org/10.1016/j.hydromet.2007.07.005 | |
dc.relation.referencesen | [25] Kuntyi O., Electrokhimia taMorphologia DispersnykhMetaliv. Vyd-vo LP, Lviv 2008. | |
dc.citation.journalTitle | Chemistry & Chemical Technology | |
dc.citation.volume | 12 | |
dc.citation.issue | 3 | |
dc.citation.spage | 305 | |
dc.citation.epage | 309 | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2018. – Vol. 12, No. 3
|