Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45150
Title: Corrosion-electrochemical behaviour of low-alloy steel in alkaline media
Other Titles: Корозійно-електрохімічна поведінка низьколегованої сталі у лужному середовищі
Authors: Maizelis, Antonina
Bairachniy, Boris
Affiliation: National Technical University “Kharkiv Polytechnic Institute”
Bibliographic description (Ukraine): Maizelis A. Corrosion-electrochemical behaviour of low-alloy steel in alkaline media / Antonina Maizelis, Boris Bairachniy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 2. — P. 258–262.
Bibliographic description (International): Maizelis A. Corrosion-electrochemical behaviour of low-alloy steel in alkaline media / Antonina Maizelis, Boris Bairachniy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 2. — P. 258–262.
Is part of: Chemistry & Chemical Technology, 2 (12), 2018
Journal/Collection: Chemistry & Chemical Technology
Issue: 2
Volume: 12
Issue Date: 20-Jan-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Keywords: водно-лужний електроліз
12Х1МФ сталь
водень
кисень
alkaline water electrolysis
12Cr1MoV steel
hydrogen
oxygen
Number of pages: 5
Page range: 258-262
Start page: 258
End page: 262
Abstract: Показано, що низьколегована хроммолібден- ванадієва сталь 12Х1МФ, у порівнянні зі сталлю звичайної якості Ст.3, у концентрованому лужному розчині має більш позитивний стаціонарний потенціал та більш низьку перенапругу виділення водню. Після пропускання 1100 А∙год/м2 кількості електрики, швидкість її анодного розчинення стає нижчою у порівнянні зі сталлю Ст.3, і не збільшується з підвищенням густини струму.
The authors demonstrated that low-alloy chrome-molybdenum-vanadium 12Cr1MoV steel has more positive open circuit potential and lower hydrogen evolution overvoltage in concentrated alkaline solution, compared to ordinary-quality St3 steel. After 1100 A∙h∙m-2 charge passing, 12Cr1MoV anodic dissolution rate becomes lower than St3 dissolution rate. It does not increase with current density increase.
URI: https://ena.lpnu.ua/handle/ntb/45150
Copyright owner: © Національний університет „Львівська політехніка“, 2018
©Maizelis A., Bairachniy B., 2018
URL for reference material: https://doi.org/10.1016/j.enpol.2009.11.058
https://doi.org/10.1016/j.pecs.2009.11.002
https://doi.org/10.1109/JPROC.2011.2156750
https://doi.org/10.1016/j.rser.2013.08.090
https://doi.org/10.1149/1.2069207
https://doi.org/10.1007/BF01018603
https://doi.org/10.1007/BF01033606
https://doi.org/10.1016/S0013-4686(01)00777-0
https://doi.org/10.1149/1.2113856
https://doi.org/10.1016/j.electacta.2012.12.105
https://doi.org/10.1186/s11671-017-1902-6
References (Ukraine): [1] Pastowski A., Grube T.: Energy Policy, 2009, 38, 5382.https://doi.org/10.1016/j.enpol.2009.11.058
[2] Zeng K., Zhang D.: Prog. Energ. Combust., 2010, 36, 307.https://doi.org/10.1016/j.pecs.2009.11.002
[3] Ursua A., Gandia L., Sanchis P.: Proceed. IEEE, 2012, 100, 410.https://doi.org/10.1109/JPROC.2011.2156750
[4] WangM., Wang Z., Gong Xu., Gou Z.: Renew. Sust. Energ. Rev., 2014, 29, 573. https://doi.org/10.1016/j.rser.2013.08.090
[5]Mazloomi K., Sulaiman N., Moayedi H.: Int. J. Electrochem. Sci., 2012, 7, 3314.
[6] Garat A., Gras J.: Int. J. Hydrogen Energ., 1983, 8, 681.
[7] Soares D., Teschke O., Torriani I.: J. Electrochem. Soc., 1992,139, 98. https://doi.org/10.1149/1.2069207
[8] Brossard L., Huot J.-Y.: J. Appl. Electrochem., 1991, 21, 508.https://doi.org/10.1007/BF01018603
[9] Huot J.-Y., Brossard L.: J. Appl. Electrochem., 1990, 20, 281.https://doi.org/10.1007/BF01033606
[10] StempM., Thorpe S., Kirk D.: Electrochemical Surface Science of Hydrogen Adsorption and Absorption [in:] Jerkiewicz G., Marcus P. (Eds.), The Electrochemical Society Proceedings Series, The Electrochemical Society, Pennington (NJ) 1997.
[11] Abouatallah R., Kirk D., Thorpe S., Graydon G.: Electrochim. Acta, 2001, 47, 613. https://doi.org/10.1016/S0013-4686(01)00777-0
[12] Gandia L., Arzamedi G., Diéguez P. et al.: Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam 2013.
[13] Jakimenko L., Modylevskaja I., Tkachek Z.: Electroliz Vody. Khimia, Moskva 1970.
[14]Millet P., Grigoriev S.: Water Electrolysis Technologies [in:] Brostow W. (Ed.).: Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam2013, 19-42.
[15] Hall D.: J. Electrochem. Soc., 1985, 132(2), 41C.https://doi.org/10.1149/1.2113856
[16]Manabe A., KashiwaseM., Hashimoto T. et al.: Electrochim. Acta, 2013, 100, 249. https://doi.org/10.1016/j.electacta.2012.12.105
[17]Maizelis A., Bairachniy B.: Nanoscale Res. Lett., 2017, 12,119. https://doi.org/10.1186/s11671-017-1902-6
[18]Maizelis A., Bairachniy B., Trubnikova L. et al.: Funct. Mat.,2012, 19, 238.
References (International): [1] Pastowski A., Grube T., Energy Policy, 2009, 38, 5382.https://doi.org/10.1016/j.enpol.2009.11.058
[2] Zeng K., Zhang D., Prog. Energ. Combust., 2010, 36, 307.https://doi.org/10.1016/j.pecs.2009.11.002
[3] Ursua A., Gandia L., Sanchis P., Proceed. IEEE, 2012, 100, 410.https://doi.org/10.1109/JPROC.2011.2156750
[4] WangM., Wang Z., Gong Xu., Gou Z., Renew. Sust. Energ. Rev., 2014, 29, 573. https://doi.org/10.1016/j.rser.2013.08.090
[5]Mazloomi K., Sulaiman N., Moayedi H., Int. J. Electrochem. Sci., 2012, 7, 3314.
[6] Garat A., Gras J., Int. J. Hydrogen Energ., 1983, 8, 681.
[7] Soares D., Teschke O., Torriani I., J. Electrochem. Soc., 1992,139, 98. https://doi.org/10.1149/1.2069207
[8] Brossard L., Huot J.-Y., J. Appl. Electrochem., 1991, 21, 508.https://doi.org/10.1007/BF01018603
[9] Huot J.-Y., Brossard L., J. Appl. Electrochem., 1990, 20, 281.https://doi.org/10.1007/BF01033606
[10] StempM., Thorpe S., Kirk D., Electrochemical Surface Science of Hydrogen Adsorption and Absorption [in:] Jerkiewicz G., Marcus P. (Eds.), The Electrochemical Society Proceedings Series, The Electrochemical Society, Pennington (NJ) 1997.
[11] Abouatallah R., Kirk D., Thorpe S., Graydon G., Electrochim. Acta, 2001, 47, 613. https://doi.org/10.1016/S0013-4686(01)00777-0
[12] Gandia L., Arzamedi G., Diéguez P. et al., Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam 2013.
[13] Jakimenko L., Modylevskaja I., Tkachek Z., Electroliz Vody. Khimia, Moskva 1970.
[14]Millet P., Grigoriev S., Water Electrolysis Technologies [in:] Brostow W. (Ed.)., Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam2013, 19-42.
[15] Hall D., J. Electrochem. Soc., 1985, 132(2), 41C.https://doi.org/10.1149/1.2113856
[16]Manabe A., KashiwaseM., Hashimoto T. et al., Electrochim. Acta, 2013, 100, 249. https://doi.org/10.1016/j.electacta.2012.12.105
[17]Maizelis A., Bairachniy B., Nanoscale Res. Lett., 2017, 12,119. https://doi.org/10.1186/s11671-017-1902-6
[18]Maizelis A., Bairachniy B., Trubnikova L. et al., Funct. Mat.,2012, 19, 238.
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2018. – Vol. 12, No. 2

Files in This Item:
File Description SizeFormat 
2018v12n2_Maizelis_A-Corrosion_electrochemical_258-262.pdf446.11 kBAdobe PDFView/Open
2018v12n2_Maizelis_A-Corrosion_electrochemical_258-262__COVER.png526.96 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.