https://oldena.lpnu.ua/handle/ntb/45150
Title: | Corrosion-electrochemical behaviour of low-alloy steel in alkaline media |
Other Titles: | Корозійно-електрохімічна поведінка низьколегованої сталі у лужному середовищі |
Authors: | Maizelis, Antonina Bairachniy, Boris |
Affiliation: | National Technical University “Kharkiv Polytechnic Institute” |
Bibliographic description (Ukraine): | Maizelis A. Corrosion-electrochemical behaviour of low-alloy steel in alkaline media / Antonina Maizelis, Boris Bairachniy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 2. — P. 258–262. |
Bibliographic description (International): | Maizelis A. Corrosion-electrochemical behaviour of low-alloy steel in alkaline media / Antonina Maizelis, Boris Bairachniy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 12. — No 2. — P. 258–262. |
Is part of: | Chemistry & Chemical Technology, 2 (12), 2018 |
Journal/Collection: | Chemistry & Chemical Technology |
Issue: | 2 |
Volume: | 12 |
Issue Date: | 20-Jan-2018 |
Publisher: | Lviv Politechnic Publishing House |
Place of the edition/event: | Lviv |
Keywords: | водно-лужний електроліз 12Х1МФ сталь водень кисень alkaline water electrolysis 12Cr1MoV steel hydrogen oxygen |
Number of pages: | 5 |
Page range: | 258-262 |
Start page: | 258 |
End page: | 262 |
Abstract: | Показано, що низьколегована хроммолібден-
ванадієва сталь 12Х1МФ, у порівнянні зі сталлю звичайної
якості Ст.3, у концентрованому лужному розчині має більш
позитивний стаціонарний потенціал та більш низьку
перенапругу виділення водню. Після пропускання 1100 А∙год/м2
кількості електрики, швидкість її анодного розчинення стає
нижчою у порівнянні зі сталлю Ст.3, і не збільшується з
підвищенням густини струму. The authors demonstrated that low-alloy chrome-molybdenum-vanadium 12Cr1MoV steel has more positive open circuit potential and lower hydrogen evolution overvoltage in concentrated alkaline solution, compared to ordinary-quality St3 steel. After 1100 A∙h∙m-2 charge passing, 12Cr1MoV anodic dissolution rate becomes lower than St3 dissolution rate. It does not increase with current density increase. |
URI: | https://ena.lpnu.ua/handle/ntb/45150 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2018 ©Maizelis A., Bairachniy B., 2018 |
URL for reference material: | https://doi.org/10.1016/j.enpol.2009.11.058 https://doi.org/10.1016/j.pecs.2009.11.002 https://doi.org/10.1109/JPROC.2011.2156750 https://doi.org/10.1016/j.rser.2013.08.090 https://doi.org/10.1149/1.2069207 https://doi.org/10.1007/BF01018603 https://doi.org/10.1007/BF01033606 https://doi.org/10.1016/S0013-4686(01)00777-0 https://doi.org/10.1149/1.2113856 https://doi.org/10.1016/j.electacta.2012.12.105 https://doi.org/10.1186/s11671-017-1902-6 |
References (Ukraine): | [1] Pastowski A., Grube T.: Energy Policy, 2009, 38, 5382.https://doi.org/10.1016/j.enpol.2009.11.058 [2] Zeng K., Zhang D.: Prog. Energ. Combust., 2010, 36, 307.https://doi.org/10.1016/j.pecs.2009.11.002 [3] Ursua A., Gandia L., Sanchis P.: Proceed. IEEE, 2012, 100, 410.https://doi.org/10.1109/JPROC.2011.2156750 [4] WangM., Wang Z., Gong Xu., Gou Z.: Renew. Sust. Energ. Rev., 2014, 29, 573. https://doi.org/10.1016/j.rser.2013.08.090 [5]Mazloomi K., Sulaiman N., Moayedi H.: Int. J. Electrochem. Sci., 2012, 7, 3314. [6] Garat A., Gras J.: Int. J. Hydrogen Energ., 1983, 8, 681. [7] Soares D., Teschke O., Torriani I.: J. Electrochem. Soc., 1992,139, 98. https://doi.org/10.1149/1.2069207 [8] Brossard L., Huot J.-Y.: J. Appl. Electrochem., 1991, 21, 508.https://doi.org/10.1007/BF01018603 [9] Huot J.-Y., Brossard L.: J. Appl. Electrochem., 1990, 20, 281.https://doi.org/10.1007/BF01033606 [10] StempM., Thorpe S., Kirk D.: Electrochemical Surface Science of Hydrogen Adsorption and Absorption [in:] Jerkiewicz G., Marcus P. (Eds.), The Electrochemical Society Proceedings Series, The Electrochemical Society, Pennington (NJ) 1997. [11] Abouatallah R., Kirk D., Thorpe S., Graydon G.: Electrochim. Acta, 2001, 47, 613. https://doi.org/10.1016/S0013-4686(01)00777-0 [12] Gandia L., Arzamedi G., Diéguez P. et al.: Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam 2013. [13] Jakimenko L., Modylevskaja I., Tkachek Z.: Electroliz Vody. Khimia, Moskva 1970. [14]Millet P., Grigoriev S.: Water Electrolysis Technologies [in:] Brostow W. (Ed.).: Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam2013, 19-42. [15] Hall D.: J. Electrochem. Soc., 1985, 132(2), 41C.https://doi.org/10.1149/1.2113856 [16]Manabe A., KashiwaseM., Hashimoto T. et al.: Electrochim. Acta, 2013, 100, 249. https://doi.org/10.1016/j.electacta.2012.12.105 [17]Maizelis A., Bairachniy B.: Nanoscale Res. Lett., 2017, 12,119. https://doi.org/10.1186/s11671-017-1902-6 [18]Maizelis A., Bairachniy B., Trubnikova L. et al.: Funct. Mat.,2012, 19, 238. |
References (International): | [1] Pastowski A., Grube T., Energy Policy, 2009, 38, 5382.https://doi.org/10.1016/j.enpol.2009.11.058 [2] Zeng K., Zhang D., Prog. Energ. Combust., 2010, 36, 307.https://doi.org/10.1016/j.pecs.2009.11.002 [3] Ursua A., Gandia L., Sanchis P., Proceed. IEEE, 2012, 100, 410.https://doi.org/10.1109/JPROC.2011.2156750 [4] WangM., Wang Z., Gong Xu., Gou Z., Renew. Sust. Energ. Rev., 2014, 29, 573. https://doi.org/10.1016/j.rser.2013.08.090 [5]Mazloomi K., Sulaiman N., Moayedi H., Int. J. Electrochem. Sci., 2012, 7, 3314. [6] Garat A., Gras J., Int. J. Hydrogen Energ., 1983, 8, 681. [7] Soares D., Teschke O., Torriani I., J. Electrochem. Soc., 1992,139, 98. https://doi.org/10.1149/1.2069207 [8] Brossard L., Huot J.-Y., J. Appl. Electrochem., 1991, 21, 508.https://doi.org/10.1007/BF01018603 [9] Huot J.-Y., Brossard L., J. Appl. Electrochem., 1990, 20, 281.https://doi.org/10.1007/BF01033606 [10] StempM., Thorpe S., Kirk D., Electrochemical Surface Science of Hydrogen Adsorption and Absorption [in:] Jerkiewicz G., Marcus P. (Eds.), The Electrochemical Society Proceedings Series, The Electrochemical Society, Pennington (NJ) 1997. [11] Abouatallah R., Kirk D., Thorpe S., Graydon G., Electrochim. Acta, 2001, 47, 613. https://doi.org/10.1016/S0013-4686(01)00777-0 [12] Gandia L., Arzamedi G., Diéguez P. et al., Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam 2013. [13] Jakimenko L., Modylevskaja I., Tkachek Z., Electroliz Vody. Khimia, Moskva 1970. [14]Millet P., Grigoriev S., Water Electrolysis Technologies [in:] Brostow W. (Ed.)., Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety. Elsevier, Amsterdam2013, 19-42. [15] Hall D., J. Electrochem. Soc., 1985, 132(2), 41C.https://doi.org/10.1149/1.2113856 [16]Manabe A., KashiwaseM., Hashimoto T. et al., Electrochim. Acta, 2013, 100, 249. https://doi.org/10.1016/j.electacta.2012.12.105 [17]Maizelis A., Bairachniy B., Nanoscale Res. Lett., 2017, 12,119. https://doi.org/10.1186/s11671-017-1902-6 [18]Maizelis A., Bairachniy B., Trubnikova L. et al., Funct. Mat.,2012, 19, 238. |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2018. – Vol. 12, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2018v12n2_Maizelis_A-Corrosion_electrochemical_258-262.pdf | 446.11 kB | Adobe PDF | View/Open | |
2018v12n2_Maizelis_A-Corrosion_electrochemical_258-262__COVER.png | 526.96 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.