Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChala, O.
dc.date.accessioned2019-06-18T12:03:41Z-
dc.date.available2019-06-18T12:03:41Z-
dc.date.created2018-06-18
dc.date.issued2018-06-18
dc.identifier.citationChala O. Models of temporal dependencies for a probabilistic knowledge base / O. Chala // Econtechmod. — Lublin, 2018. — Vol 7. — No 3. — P. 53–58.
dc.identifier.issn2084-5715
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45127-
dc.description.abstractThe article presents models of temporal dependences for constructing probabilistic temporal rules in the Markov Logical Networks. Such rules describe the relations between the states of a control object and taking account the possibility of integrating different approaches of management according to the paradigm of “Enterprise 2.0” knowledge sharing. The proposed models define constraints and conditions for changing the states of a control object, which allows predicting possible variants of its behavior in relation to the current state and providing decision support based on a choice of the most likely variants.
dc.format.extent53-58
dc.language.isoen
dc.relation.ispartofEcontechmod, 3 (7), 2018
dc.relation.urihttps://doi
dc.subjecttemporal dependencies
dc.subjecttemporal rule
dc.subjectknowledge base
dc.subjectinformation control system
dc.subjectevent
dc.subjectattribute
dc.subjectevent log
dc.titleModels of temporal dependencies for a probabilistic knowledge base
dc.typeArticle
dc.rights.holder© Copyright by Lviv Polytechnic National University 2018
dc.rights.holder© Copyright by Polish Academy of Sciences 2018
dc.rights.holder© Copyright by University of Engineering and Economics in Rzeszów 2018
dc.rights.holder© Copyright by University of Life Sciences in Lublin 2018
dc.contributor.affiliationKharkiv National University of Radio Electronics
dc.format.pages6
dc.identifier.citationenChala O. Models of temporal dependencies for a probabilistic knowledge base / O. Chala // Econtechmod. — Lublin, 2018. — Vol 7. — No 3. — P. 53–58.
dc.relation.references1. Bughin J. 2008. The rise of enterprise 2.0. Journal of Direct, Data and Digital Marketing Practice, 9(3),251–259.
dc.relation.references2. Kalynychenko O., Chalyi S., Bodyanskiy Y., Golian V., Golian N. 2013. Implementation of search mechanism for implicit dependences in process mining. 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems. Available:https://doi. org/10.1109/idaacs.2013.6662.
dc.relation.references3. Christidis K., Mentzas G., Apostolou D. 2012. Using latent topics to enhance search andrecommendation in Enterprise Social Software. Expert Systems with Applications, 39(10), 9297–9307.
dc.relation.references4. Vom Brocke J. 2015. Handbook on Business Process Management 1. Introduction, Methods, and Information Systems. Springer-Verlag Berlin Heidelberg, p. 709 doi:10.1007/978-3-642-45100-3
dc.relation.references5. Shin J., Wu S., Wang F., De Sa C. Zhang С., R´e С. 2015. Incremental Knowledge Base Construction Using DeepDive. 41 th International Conference on Very Large Data Bases (VLDB).Vol. 8(11).
dc.relation.references6. Niu F., Zhang C., Re C. 2012. DeepDive: Webscale Knowledge-base Construction using Statistical Learning and Inference. VLDS, 25–28.
dc.relation.references7. Chalyi S., Levykin I., Petrychenko A. and Bogatov I. 2018. Causality-based model checking in business process management tasks. Proc. IEEE 9th International Conference on Dependable Systems, Services and Technologies DESSERT’2018. Ukraine, Kyiv. May 24–27, 478 – 483.
dc.relation.references8. Van der Aalst W. M. P. 2014. Process Mining in the Large. A Tutorial. Business Intelligence. Springer Science + Business Media, 33–76.doi:10.1007/978-3-319-05461-2_2
dc.relation.references9. Gronau N., Thim C., Ullrich A., Weber E. 2016. A Proposal to Model Knowledge in Knowledge- Intensive Business Processes. BMSD 2016: 6th Int. Symposium on Business Modeling and Software Design. doi:10.5220/0006222600980103.
dc.relation.references10. Richardson M., Domingos P. 2006. Markov logic networks. Machine learning, 62(1-2), 107–136.doi: 10.1007/s10994- 006-8633-8.
dc.relation.references11. Lowd D., Domingos P. 2007. Efficient weight learning for Markov logic networks. European Conference on Principles of Data Mining and Knowledge Discovery. Knowledge discovery in databases: PKDD 2007.
dc.relation.references12. Levykin V., Chala O. 2018. Method of automated construction and expansion of the knowledge base of the business process management system. EUREKA: Physics and Engineering, 4, 29–35.
dc.relation.references13. Levykin V., Chala O. 2018. Method of determining weights of temporal rules in markov logic network for building knowledge base in information control system. EUREKA: Physics and Engineering, 5,29–35.
dc.relation.references14. Christian W. Gunther, Eric Verbeek. 2014. XES Standard Definition. 24.
dc.relation.references15. Beskorovainyi V. V., Berezovskyi H. 2017. Identification of preferences in decision support systems. Econtechmod. An international quarterly journal. Vol. 6, No. 4, 15–20.
dc.relation.referencesen1. Bughin J. 2008. The rise of enterprise 2.0. Journal of Direct, Data and Digital Marketing Practice, 9(3),251–259.
dc.relation.referencesen2. Kalynychenko O., Chalyi S., Bodyanskiy Y., Golian V., Golian N. 2013. Implementation of search mechanism for implicit dependences in process mining. 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems. Available:https://doi. org/10.1109/idaacs.2013.6662.
dc.relation.referencesen3. Christidis K., Mentzas G., Apostolou D. 2012. Using latent topics to enhance search andrecommendation in Enterprise Social Software. Expert Systems with Applications, 39(10), 9297–9307.
dc.relation.referencesen4. Vom Brocke J. 2015. Handbook on Business Process Management 1. Introduction, Methods, and Information Systems. Springer-Verlag Berlin Heidelberg, p. 709 doi:10.1007/978-3-642-45100-3
dc.relation.referencesen5. Shin J., Wu S., Wang F., De Sa C. Zhang S., R´e P. 2015. Incremental Knowledge Base Construction Using DeepDive. 41 th International Conference on Very Large Data Bases (VLDB).Vol. 8(11).
dc.relation.referencesen6. Niu F., Zhang C., Re P. 2012. DeepDive: Webscale Knowledge-base Construction using Statistical Learning and Inference. VLDS, 25–28.
dc.relation.referencesen7. Chalyi S., Levykin I., Petrychenko A. and Bogatov I. 2018. Causality-based model checking in business process management tasks. Proc. IEEE 9th International Conference on Dependable Systems, Services and Technologies DESSERT’2018. Ukraine, Kyiv. May 24–27, 478 – 483.
dc.relation.referencesen8. Van der Aalst W. M. P. 2014. Process Mining in the Large. A Tutorial. Business Intelligence. Springer Science + Business Media, 33–76.doi:10.1007/978-3-319-05461-2_2
dc.relation.referencesen9. Gronau N., Thim C., Ullrich A., Weber E. 2016. A Proposal to Model Knowledge in Knowledge- Intensive Business Processes. BMSD 2016: 6th Int. Symposium on Business Modeling and Software Design. doi:10.5220/0006222600980103.
dc.relation.referencesen10. Richardson M., Domingos P. 2006. Markov logic networks. Machine learning, 62(1-2), 107–136.doi: 10.1007/s10994- 006-8633-8.
dc.relation.referencesen11. Lowd D., Domingos P. 2007. Efficient weight learning for Markov logic networks. European Conference on Principles of Data Mining and Knowledge Discovery. Knowledge discovery in databases: PKDD 2007.
dc.relation.referencesen12. Levykin V., Chala O. 2018. Method of automated construction and expansion of the knowledge base of the business process management system. EUREKA: Physics and Engineering, 4, 29–35.
dc.relation.referencesen13. Levykin V., Chala O. 2018. Method of determining weights of temporal rules in markov logic network for building knowledge base in information control system. EUREKA: Physics and Engineering, 5,29–35.
dc.relation.referencesen14. Christian W. Gunther, Eric Verbeek. 2014. XES Standard Definition. 24.
dc.relation.referencesen15. Beskorovainyi V. V., Berezovskyi H. 2017. Identification of preferences in decision support systems. Econtechmod. An international quarterly journal. Vol. 6, No. 4, 15–20.
dc.citation.journalTitleEcontechmod
dc.citation.volume7
dc.citation.issue3
dc.citation.spage53
dc.citation.epage58
dc.coverage.placenameLublin
Appears in Collections:Econtechmod. – 2018. – Vol. 7, No. 3

Files in This Item:
File Description SizeFormat 
2018v7n3_Chala_O-Models_of_temporal_dependencies_53-58.pdf182.12 kBAdobe PDFView/Open
2018v7n3_Chala_O-Models_of_temporal_dependencies_53-58__COVER.png451.39 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.