Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/44998
Full metadata record
DC FieldValueLanguage
dc.contributor.authorТретяк, К.
dc.contributor.authorАль-Алусі, Ф. К. Ф.
dc.contributor.authorБабій, Л.
dc.contributor.authorTretyak, K.
dc.contributor.authorAl-Alusi, F. K. F.
dc.contributor.authorBabiy, L.
dc.contributor.authorТретяк, К.
dc.contributor.authorАль-Алуси, Ф. К. Ф.
dc.contributor.authorБабий, Л.
dc.date.accessioned2019-05-21T11:10:49Z-
dc.date.available2019-05-21T11:10:49Z-
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.identifier.citationTretyak K. Investigation of the interrelationship between changes and redistribution of angular momentum of the earth, the antarctic tectonic plate, the atmosphere, and the ocean / K. Tretyak, F. K. F. Al-Alusi, L. Babiy // Геодинаміка : науковий журнал. — Львів : Видавництво Львівської політехніки, 2018. — № 1 (24). — С. 5–26.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44998-
dc.description.abstractМета. Метою цієї роботи є опрацювання результатів довготривалих ГНСС-спостережень на перманентних станціях, розташованих на території Антарктичної тектонічної плити; визначення зміни її ротаційних параметрів та моменту імпульсу, обчислення зміни моменту імпульсу Землі , океанічних та атмосферних мас і встановлення взаємозв’язку між цими параметрами. Методика. У роботі представлено удосконалений алгоритм визначення параметрів полюсу Ейлера і кутової швидкості обертання тектонічної плити з урахуванням безперервності та нерівномірності часових серій щоденних розв’язків просторового розташування перманентних ГНСС-станцій. Результати. За результатами щоденних розв’язків 28 перманентних ГНСС-станцій Антарктиди за період (1996–2014 рр.) визначено положення середнього полюсу Ейлера, кутової швидкості обертання плити та їхні щорічні зміни. Визначено щорічні параметри тензора інерції та моменту імпульсу Антарктичної тектонічної плити. Обчислено за даними служби обертання Землі та геофізичних спостережень щорічні зміни моменту імпульсу Землі та тензори моменту інерції та величини моменту імпульсу океанічних та атмосферних мас за період (1996–2014 р.). Наукова новизна. Встановлено, що практично протягом усього періоду спостережень збільшенню моменту імпульсу Антарктичної тектонічної плити відповідає зменшення моменту імпульсу Землі та атмосфери, що свідчить про збереження моменту імпульсу. Збільшенню моменту імпульсу Антарктичної тектонічної плити відповідає збільшення моменту імпульсу океану. Пояснення цього взаємозв’язку вимагає додаткових досліджень.
dc.description.abstractPurpose. The purpose of this work is elaboration of the results of long-term GNSS-observations at permanent stations located on the Antarctic tectonic plate; the determination of the change in its rotational parameters and angular momentum, the calculation of the angular momentum of the Earth, the oceanic and atmospheric masses, and the establishment of the interrelationship between these parameters. Methods. The work represents an improved algorithm for determining the parameters of the Euler pole and the angular velocity of the tectonic plate, taking into account the continuity and unevenness of time series of daily solutions of the spatial location of permanent GNSS-stations. Results. According to the results of daily solutions of 28 permanent GNSS-stations in Antarctica for the period (1996–2014), the average position of Euler pole, the angular velocity of the plate, and their annual changes are determined. The annual parameters of the tensor of inertia and angular momentum of the Antarctic tectonic plate are determined. Using the data of the Earth’s rotation service and geophysical observations, the annual changes in the angular momentum of the Earth, the tensors of moment of inertia, and angular momentum of oceanic and atmospheric masses for the period (1996–2014) have been calculated. Scientific novelty. It is established that during the whole observation period the increase of the angular momentum of the Antarctic tectonic plate corresponds to the decrease of the angular momentum of the Earth and the atmosphere. This indicates the conservation of angular momentum. The increases of the angular momentum of Antarctic tectonic plate corresponds to the increases of the angular momentum of the ocean. Explanation of this interrelationship requires additional research.
dc.description.abstractЦель. Целью данной работы является обработка результатов длительных ГНСС-наблюдений на перманентных станциях, расположенных на территории Антарктической тектонической плиты; определения изменения ее ротационных параметров и момента импульса, вычисления изменения момента импульса Земли, океанических и атмосферных масс и установление взаимосвязи между этими параметрами. Методика. В работе представлены усовершенствованный алгоритм определения параметров полюса Эйлера и угловой скорости вращения тектонической плиты с учетом непрерывности и неравномерности временных серий ежедневных решений пространственного расположения перманентных ГНСС-станций. Результаты. По результатам ежедневных решений 28 перманентных ГНСС-станций Антарктиды за период (1996–2014 гг.), определено положение среднего полюса Эйлера и угловой скорости вращения плиты и их ежегодные изменения. Определены ежегодные параметры тензора инерции и момента импульса Антарктической тектонической плиты. Вычислено по данным службы вращения Земли и геофизических наблюдений ежегодные изменения момента импульса Земли и тензоры момента инерции и величины момента импульса океанических и атмосферных масс за период (1996–2014 гг.). Научная новизна. Установлено, что практически в течение всего периода наблюдений увеличению момента импульса Антарктической тектонической плиты соответствует уменьшение момента импульса Земли и атмосферы, это свидетельствует о сохранении момента импульса. Увеличению момента импульса Антарктической тектонической плиты соответствует увеличение момента импульса океана. Объяснение этого взаимосвязи требует дополнительных исследований.
dc.format.extent5-26
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofГеодинаміка : науковий журнал, 1 (24), 2018
dc.relation.urihttps://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
dc.relation.urihttp://ggosatm.hg.tuwien.ac.at/
dc.relation.urihttps://doi.org/10.1186/s40623-015-0375-z
dc.relation.urihttps://www.iers.org/IERS/EN/Home/home_node.html
dc.relation.urihttp://geodesy.unr.edu/
dc.relation.urihttp://sopac.ucsd.edu/
dc.subjectАнтарктична плита
dc.subjectмомент імпульсу
dc.subjectтензор інерції
dc.subjectкутова швидкість
dc.subjectполюс Ейлера
dc.subjectГНСС-станції
dc.subjectAntarctic plate
dc.subjectangular momentum
dc.subjecttensor of inertia
dc.subjectangular velocity
dc.subjectEuler pole
dc.subjectGNSSstations
dc.subjectАнтарктическая плита
dc.subjectмомент импульса
dc.subjectтензор инерции
dc.subjectугловая скорость
dc.subjectполюс Эйлера
dc.titleInvestigation of the interrelationship between changes and redistribution of angular momentum of the earth, the antarctic tectonic plate, the atmosphere, and the ocean
dc.title.alternativeДослідження взаємозв’язку між змінами та перерозподілом моменту імпульсу землі, антарктичної тектонічної плити, атмосфери та океану
dc.title.alternativeИсследование взаимосвязи между изменениями и перераспределением момента импульса земли, антарктической тектонической плиты, атмосферы и океана
dc.typeArticle
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2018
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2018
dc.rights.holder© Державна служба геодезії, картографії та кадастру України, 2018
dc.rights.holder© Львівське астрономо-геодезичне товариство, 2018
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.rights.holder© К. Р. Третяк, Ф. К. Ф. Аль-Алусі,Л. В. Бабій
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationНациональный университет “Львовская политехника”
dc.format.pages22
dc.identifier.citationenTretyak K. Investigation of the interrelationship between changes and redistribution of angular momentum of the earth, the antarctic tectonic plate, the atmosphere, and the ocean / K. Tretyak, F. K. F. Al-Alusi, L. Babiy // Heodynamika : naukovyi zhurnal. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — No 1 (24). — P. 5–26.
dc.relation.referencesAltamimi, Z., Métivier, L., & Collilieux, X. (2012).
dc.relation.referencesITRF2008 plate motion model. Journal of
dc.relation.referencesGeophysical Research: Solid Earth, 117(B7).doi:10.1029/2011jb008930
dc.relation.referencesArgus, D. F., & Gordon, R. G. (1991). Nо-
dc.relation.referenceso‐net‐rotation model of current plate velocities incorporating
dc.relation.referencesplate motion model NUVEL‐1.
dc.relation.referencesGeophysical research letters, 18(11), 2039–2042.
dc.relation.referencesArgus, D. F., Gordon, R. G., & Demets, C. (2011).
dc.relation.referencesGeologically current motion of 56 plates relative
dc.relation.referencesto the no-net-rotation reference frame.
dc.relation.referencesGeochemistry, Geophysics, Geosystems, 12(11).doi:10.1029/2011gc003751
dc.relation.referencesBaranov, A., & Morelli, A. (2013, April). The Moho
dc.relation.referencesdepth and the inner crustal structure of the
dc.relation.referencesAntarctica region. In EGU General Assembly
dc.relation.referencesConference Abstracts (Vol. 15).
dc.relation.referencesBowin, C. (2010). Plate tectonics conserves angular
dc.relation.referencesmomentum. EEarth, 5(1), 1–20. doi:10.5194/ee-5-12010
dc.relation.referencesBrosche, P., & Sündermann, J. (1985). The Antarctic
dc.relation.referencesCircumpolar Current and its influence on the
dc.relation.referencesEarth’s rotation. Deutsche Hydrografische
dc.relation.referencesZeitschrift, 38(1), 1–6.
dc.relation.referencesBrosche, P., Wünsch, J., Frische, A., Sündermann, J.,& Maier-Reimer, E. (1990). The seasonal
dc.relation.referencesvariation of the angular momentum of the
dc.relation.referencesoceans. Naturwissenschaften, 77(4), 185–186.
dc.relation.referencesBrosche, P., Wünsch, J., Maier-Reimer, E.,
dc.relation.referencesSegschneider, J., & Sündermann, J. (1997). The
dc.relation.referencesaxial angular momentum of the general circulation
dc.relation.referencesof the oceans. Astronomische Nachrichten, 318(3),193–199.
dc.relation.referencesBryan, F. O. (1997). The axial angular momentum
dc.relation.referencesbalance of a global ocean general circulation
dc.relation.referencesmodel. Dynamics of atmospheres and
dc.relation.referencesoceans, 25(3), 191–216.
dc.relation.referencesSottili, G., Palladino, D. M., Cuffaro, M., & Doglioni,
dc.relation.referencesC. (2015). Earth’s rotation variability triggers
dc.relation.referencesexplosive eruptions in subduction zones. Earth,
dc.relation.referencesPlanets and Space, 67(1), 208.
dc.relation.referencesCelaya, M. A., Wahr, J. M., & Bryan, F. O. (1999).
dc.relation.referencesClimatе-driven polar motion. Journal of
dc.relation.referencesGeophysical Research: Solid Earth, 104(B6),12813–12829.
dc.relation.referencesChen, J. L., Wilson, C. R., Chao, B. F., Shum, C. K.,
dc.relation.references& Tapley, B. D. (2000). Hydrological and oceanic
dc.relation.referencesexcitations to polar motion andlength-of-day
dc.relation.referencesvariation. Geophysical Journal International,141(1), 149–156.
dc.relation.referencesDickey, J. O., Marcus, S. L., Johns, C. M., Hide, R.,
dc.relation.references& Thompson, S. R. (1993). The oceanic
dc.relation.referencescontribution to the Earth’s seasonal angular
dc.relation.referencesmomentum budget. Geophysical research
dc.relation.referencesletters, 20(24), 2953–2956.
dc.relation.referencesDickman, S. R. (1998). Determination of oceanic
dc.relation.referencesdynamic barometer corrections to atmospheric
dc.relation.referencesexcitation of Earth rotation. Journal of
dc.relation.referencesGeophysical Research: Solid Earth, 103(B7),15127–15143.
dc.relation.referencesDietrich, R., & Rülke, A. (2008). A precise reference
dc.relation.referencesframe for Antarctica from SCAR GPS campaign
dc.relation.referencesdata and some geophysical implications.
dc.relation.referencesIn Geodetic and Geophysical Observations in
dc.relation.referencesAntarctica (pp. 1-10). Springer, Berlin,
dc.relation.referencesHeidelberg.
dc.relation.referencesDietrich, R., Dach, R., Engelhardt, G., Ihde, J., Korth,
dc.relation.referencesW., Kutterer, H. J., ... & Müller, C. (2001). ITRF
dc.relation.referencescoordinates and plate velocities from repeated
dc.relation.referencesGPS campaigns in Antarctica–an analysis based
dc.relation.referenceson different individual solutions. Journal of
dc.relation.referencesGeodesy, 74(11–12), 756–766.
dc.relation.referencesDietrich, R., Rülke, A., Ihde, J., Lindner, K., Miller,
dc.relation.referencesH., Niemeier, W., ... & Seeber, G. (2004). Plate
dc.relation.referenceskinematics and deformation status of the Antarctic
dc.relation.referencesPeninsula based on GPS. Global and Planetary
dc.relation.referencesChange, 42(1-4), 313–321.
dc.relation.referencesDrewes, H. (2009). The actual plate kinematic and
dc.relation.referencescrustal deformation model APKIM2005 as basis
dc.relation.referencesfor a non-rotating ITRF. In Geodetic Reference
dc.relation.referencesFrames (pp. 95–99). Springer, Berlin, Heidelberg.DOI:10.1007/978-3-642-00860-3_15, 2009.
dc.relation.referencesDrewes, H., & Angermann, D. (2001). The actual
dc.relation.referencesplate kinematic and crustal deformation model 2000 (APKIM 2000) as a geodetic reference
dc.relation.referencessystem. In IAG 2001 Scientific Assembly,
dc.relation.referencesBudapest, Hungary.
dc.relation.referencesDrewes, H. (1998). Combination of VLBI, SLR and
dc.relation.referencesGPS determined station velocities for actual plate
dc.relation.referenceskinematic and crustal deformation models.
dc.relation.referencesIn Geodesy on the Move (pp. 377–382). Springer,
dc.relation.referencesBerlin, Heidelberg.
dc.relation.referencesEubanks, T. M. (1993). Interactions between the
dc.relation.referencesatmosphere, oceans and crust: Possible oceanic
dc.relation.referencessignals in Earth rotation. Advances in Space
dc.relation.referencesResearch, 13(11), 291–300.
dc.relation.referencesFrische, A., & Sündermann, J. (1990). The seasonal
dc.relation.referencesangular momentum of the thermohaline ocean
dc.relation.referencescirculation. In Earth’s Rotation From Eons to
dc.relation.referencesDays (pp. 108–126). Springer, Berlin, Heidelberg.
dc.relation.referencesFuruya, M., & Hamano, Y. (1998). Effect of the
dc.relation.referencesPacific Ocean on the Earth’s seasonal wobble
dc.relation.referencesinferred from National Center for Environmental
dc.relation.referencesPrediction ocean analysis data. Journal of
dc.relation.referencesGeophysical Research: Solid Earth, 103(B5),10131–10140.
dc.relation.referencesFylatj'ev V. P. (2007). The influence of rotational
dc.relation.referenceseffects on the tectonics of the planet (on the
dc.relation.referencesexample of the transition zone from the Asian
dc.relation.referencescontinent to the Pacific Ocean). Rotational
dc.relation.referencesprocesses in Geology and Physics. Moscow., 341–360 (in Russian).
dc.relation.referencesKhain, V. E., & A. I. Poletayev. (2007). Rotation
dc.relation.referencestectonics of the Earth. Science in Russia, (6), 14–21 (in Russian).
dc.relation.referencesNational Geophysical Data Center. (2006, July 26).
dc.relation.referencesETOPO5 Data and Documentation | ngdc.noaa.gov. Retrieved from https://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
dc.relation.referencesPandul, Y. (2017). Geodetic astronomy applied to the
dc.relation.referencessolution of engineering and geodesic problems.
dc.relation.referencesLitres.
dc.relation.referencesProject Overview. (n.d.). Retrieved from http://ggosatm.hg.tuwien.ac.at/
dc.relation.referencesSottili, G., Palladino, D. M., Cuffaro, M., & Doglioni,
dc.relation.referencesC. (2015). Earth’s rotation variability triggers
dc.relation.referencesexplosive eruptions in subduction zones. Earth,
dc.relation.referencesPlanets and Space, 67(1), 208. https://doi.org/10.1186/s40623-015-0375-z
dc.relation.referencesSeitz, F., & Schmidt, M. (2005). Atmospheric and
dc.relation.referencesoceanic contributions to Chandler wobble
dc.relation.referencesexcitation determined by wavelet
dc.relation.referencesfiltering. Journal of Geophysical Research: Solid
dc.relation.referencesEarth,110(B11). doi:10.1029/2005jb003826
dc.relation.referencesNavigation and service. (n.d.). Retrieved fromhttps://www.iers.org/IERS/EN/Home/home_node.html
dc.relation.referencesJohnson, T. J., Wilson, C. R., & Chao, B. F. (1999).
dc.relation.referencesOceanic angular momentum variability estimated
dc.relation.referencesfrom the Parallel Ocean Climate Model, 1988–1998. Journal of Geophysical Research: SolidEarth,104(B11), 25183-25195.doi:10.1029/1999jb900231
dc.relation.referencesKhain, V. E. (2010). Constructing a truly global
dc.relation.referencesmodel of Earth’s dynamics: basic principles.
dc.relation.referencesRussian Geology and Geophysics, 51(6), 587–591.
dc.relation.referencesTretjak K. R., Alj-Alusi F. K. F. About relationship of
dc.relation.referencesuneven of the Earth rotational movement and
dc.relation.referencesAntarctic tectonic plate. Ukrainian Antarctic
dc.relation.referencesJournal, (14), 43–57 (in Ukrainian).
dc.relation.referencesTretyak, K., Forat, A., & Holubinka, Y. (2017).
dc.relation.referencesInvestigation of Changes of the Kinematic
dc.relation.referencesParameters of Antarctic Tectonic Plate Using Data
dc.relation.referencesObservations of Permanent GNSS Stations.
dc.relation.referencesReports on Geodesy and Geoinformatics, 103(1).doi:10.1515/rgg-2017-0010
dc.relation.referencesKane, M. F. (1972). Rotational Inerfia of Continents:
dc.relation.referencesA Proposed Link between Polar Wandering and
dc.relation.referencesPlate Tectonics. Science, 175(4028), 1355–1357.doi:10.1126/science.175.4028.1355
dc.relation.referencesNastula, J., & Ponte, R. M. (1999). Further evidence
dc.relation.referencesfor oceanic excitation of polar motion.
dc.relation.referencesGeophysical Journal International, 139(1), 123–130. doi:10.1046/j.1365-246x.1999.00930.x
dc.relation.referencesLink to our Data Products Page:. (n.d.). Retrievedfrom http://geodesy.unr.edu/
dc.relation.referencesPonte, R. M., & Gutzler, D. S. (1991). The Madden-
dc.relation.referencesJulian oscillation and the angular momentum
dc.relation.referencesbalance in a barotropic ocean model. Journal of
dc.relation.referencesGeophysical Research: Oceans, 96(C1), 835–842.doi:10.1029/90jc02277
dc.relation.referencesPonte, R. M., & Stammer, D. (2000). Global and
dc.relation.referencesregional axial ocean angular momentum signals and
dc.relation.referenceslength-of-day variations (1985–1996). Journal of
dc.relation.referencesGeophysical Research: Oceans, 105(C7), 17161–17171. doi:10.1029/1999jc000157
dc.relation.referencesPonte, R. M., & Stammer, D. (1999). Role of ocean
dc.relation.referencescurrents and bottom pressure variability on
dc.relation.referencesseasonal polar motion. Journal of Geophysical
dc.relation.referencesResearch: Oceans, 104(C10), 23393–23409.doi:10.1029/1999jc900222
dc.relation.referencesPonte, R. M., & Rosen, R. D. (1994). Oceanic angular
dc.relation.referencesmomentum and torques in a general circulation
dc.relation.referencesmodel. Journal of physical oceanography, 24(9),1966–1977.
dc.relation.referencesPonte, R. M. (1990). Barotropic motions and the
dc.relation.referencesexchange of angular momentum between the oceans
dc.relation.referencesand solid Earth. Journal of Geophysical Research,95(C7), 11369. doi:10.1029/jc095ic07p11369
dc.relation.referencesPonte, R. M., Stammer, D., & Marshall, J. (1998).
dc.relation.referencesOceanic signals in observed motions of the Earths
dc.relation.referencespole of rotation. Nature, 391(6666), 476–479.doi:10.1038/35126.
dc.relation.referencesPonte, R. M. (1997). Oceanic excitation of daily to
dc.relation.referencesseasonal signals in Earth rotation: Results from a
dc.relation.referencesconstant-density numerical model. Geophysical
dc.relation.referencesJournal International, 130(2), 469–474.doi:10.1111/j.1365-246x.1997.tb05662.x
dc.relation.referencesSchettino, A. (1999). Computational methods for
dc.relation.referencescalculating geometric parameters of tectonic
dc.relation.referencesplates. Computers & Geosciences, 25(8), 897–907. doi:10.1016/s0098-3004(99)00054-0
dc.relation.referencesScripps Orbit and Permanent Array Center (SOPAC).
dc.relation.references(n.d.). Retrieved from http://sopac.ucsd.edu/
dc.relation.referencesSella, G. F., Dixon, T. H., & Mao, A. (2002).
dc.relation.referencesREVEL: A model for Recent plate velocities from
dc.relation.referencesspace geodesy. Journal of Geophysical Research:
dc.relation.referencesSolid Earth, 107(B4). doi:10.1029/2000jb000033
dc.relation.referencesJin, S., & Zhu, W. (2004). A revision of the
dc.relation.referencesparameters of the NNR-NUVEL-1A plate velocity
dc.relation.referencesmodel. Journal of Geodynamics, 38(1), 85–92.doi:10.1016/j.jog.2004.03.004
dc.relation.referencesTretyak, K. R., & Vovk, A. I. (2016). Differentation
dc.relation.referencesof the rotational movements of the european
dc.relation.referencescontinents Earth crust. Acta Geodynamica et
dc.relation.referencesGeomaterialia, 13(1), 181.
dc.relation.referencesVikulin, А. (2015). Geodynamics as wave dynamics
dc.relation.referencesof the medium composed of rotating
dc.relation.referencesblocks. Geodynamics & Tectono-physics, 6(3),345–364. doi:10.5800/gt-2015-6-3-0185
dc.relation.referencesVikulin, A. V., Makhmudov, Kh. F., Ivanchin, A. G.,
dc.relation.referencesGerus, A. I., & Dolgaya, A. A. (2016). On the
dc.relation.referenceswave and reid properties of the Earth’s crust. Solid
dc.relation.referencesState Physics, 58 (3), 547–557.
dc.relation.referencesJiang, W., E, D., Zhan, B., & Liu, Y. (2009). New
dc.relation.referencesModel of Antarctic Plate Motion and Its
dc.relation.referencesAnalysis. Chinese Journal of Geophysics, 52(1),23-32. i:10.1002 /cjg2. 1323
dc.relation.referencesWu, X., Ray, J., & Dam, T. V. (2012). Geocenter
dc.relation.referencesmotion and its geodetic and geophysicalimplications. Journal of Geodynamics, 58, 44–61.doi:10.1016/j.jog.2012.01.007
dc.relation.referencesenAltamimi, Z., Métivier, L., & Collilieux, X. (2012).
dc.relation.referencesenITRF2008 plate motion model. Journal of
dc.relation.referencesenGeophysical Research: Solid Earth, 117(B7).doi:10.1029/2011jb008930
dc.relation.referencesenArgus, D. F., & Gordon, R. G. (1991). No-
dc.relation.referenceseno‐net‐rotation model of current plate velocities incorporating
dc.relation.referencesenplate motion model NUVEL‐1.
dc.relation.referencesenGeophysical research letters, 18(11), 2039–2042.
dc.relation.referencesenArgus, D. F., Gordon, R. G., & Demets, C. (2011).
dc.relation.referencesenGeologically current motion of 56 plates relative
dc.relation.referencesento the no-net-rotation reference frame.
dc.relation.referencesenGeochemistry, Geophysics, Geosystems, 12(11).doi:10.1029/2011gc003751
dc.relation.referencesenBaranov, A., & Morelli, A. (2013, April). The Moho
dc.relation.referencesendepth and the inner crustal structure of the
dc.relation.referencesenAntarctica region. In EGU General Assembly
dc.relation.referencesenConference Abstracts (Vol. 15).
dc.relation.referencesenBowin, C. (2010). Plate tectonics conserves angular
dc.relation.referencesenmomentum. EEarth, 5(1), 1–20. doi:10.5194/ee-5-12010
dc.relation.referencesenBrosche, P., & Sündermann, J. (1985). The Antarctic
dc.relation.referencesenCircumpolar Current and its influence on the
dc.relation.referencesenEarth’s rotation. Deutsche Hydrografische
dc.relation.referencesenZeitschrift, 38(1), 1–6.
dc.relation.referencesenBrosche, P., Wünsch, J., Frische, A., Sündermann, J.,& Maier-Reimer, E. (1990). The seasonal
dc.relation.referencesenvariation of the angular momentum of the
dc.relation.referencesenoceans. Naturwissenschaften, 77(4), 185–186.
dc.relation.referencesenBrosche, P., Wünsch, J., Maier-Reimer, E.,
dc.relation.referencesenSegschneider, J., & Sündermann, J. (1997). The
dc.relation.referencesenaxial angular momentum of the general circulation
dc.relation.referencesenof the oceans. Astronomische Nachrichten, 318(3),193–199.
dc.relation.referencesenBryan, F. O. (1997). The axial angular momentum
dc.relation.referencesenbalance of a global ocean general circulation
dc.relation.referencesenmodel. Dynamics of atmospheres and
dc.relation.referencesenoceans, 25(3), 191–216.
dc.relation.referencesenSottili, G., Palladino, D. M., Cuffaro, M., & Doglioni,
dc.relation.referencesenC. (2015). Earth’s rotation variability triggers
dc.relation.referencesenexplosive eruptions in subduction zones. Earth,
dc.relation.referencesenPlanets and Space, 67(1), 208.
dc.relation.referencesenCelaya, M. A., Wahr, J. M., & Bryan, F. O. (1999).
dc.relation.referencesenClimate-driven polar motion. Journal of
dc.relation.referencesenGeophysical Research: Solid Earth, 104(B6),12813–12829.
dc.relation.referencesenChen, J. L., Wilson, C. R., Chao, B. F., Shum, C. K.,
dc.relation.referencesen& Tapley, B. D. (2000). Hydrological and oceanic
dc.relation.referencesenexcitations to polar motion andlength-of-day
dc.relation.referencesenvariation. Geophysical Journal International,141(1), 149–156.
dc.relation.referencesenDickey, J. O., Marcus, S. L., Johns, C. M., Hide, R.,
dc.relation.referencesen& Thompson, S. R. (1993). The oceanic
dc.relation.referencesencontribution to the Earth’s seasonal angular
dc.relation.referencesenmomentum budget. Geophysical research
dc.relation.referencesenletters, 20(24), 2953–2956.
dc.relation.referencesenDickman, S. R. (1998). Determination of oceanic
dc.relation.referencesendynamic barometer corrections to atmospheric
dc.relation.referencesenexcitation of Earth rotation. Journal of
dc.relation.referencesenGeophysical Research: Solid Earth, 103(B7),15127–15143.
dc.relation.referencesenDietrich, R., & Rülke, A. (2008). A precise reference
dc.relation.referencesenframe for Antarctica from SCAR GPS campaign
dc.relation.referencesendata and some geophysical implications.
dc.relation.referencesenIn Geodetic and Geophysical Observations in
dc.relation.referencesenAntarctica (pp. 1-10). Springer, Berlin,
dc.relation.referencesenHeidelberg.
dc.relation.referencesenDietrich, R., Dach, R., Engelhardt, G., Ihde, J., Korth,
dc.relation.referencesenW., Kutterer, H. J., ... & Müller, C. (2001). ITRF
dc.relation.referencesencoordinates and plate velocities from repeated
dc.relation.referencesenGPS campaigns in Antarctica–an analysis based
dc.relation.referencesenon different individual solutions. Journal of
dc.relation.referencesenGeodesy, 74(11–12), 756–766.
dc.relation.referencesenDietrich, R., Rülke, A., Ihde, J., Lindner, K., Miller,
dc.relation.referencesenH., Niemeier, W., ... & Seeber, G. (2004). Plate
dc.relation.referencesenkinematics and deformation status of the Antarctic
dc.relation.referencesenPeninsula based on GPS. Global and Planetary
dc.relation.referencesenChange, 42(1-4), 313–321.
dc.relation.referencesenDrewes, H. (2009). The actual plate kinematic and
dc.relation.referencesencrustal deformation model APKIM2005 as basis
dc.relation.referencesenfor a non-rotating ITRF. In Geodetic Reference
dc.relation.referencesenFrames (pp. 95–99). Springer, Berlin, Heidelberg.DOI:10.1007/978-3-642-00860-3_15, 2009.
dc.relation.referencesenDrewes, H., & Angermann, D. (2001). The actual
dc.relation.referencesenplate kinematic and crustal deformation model 2000 (APKIM 2000) as a geodetic reference
dc.relation.referencesensystem. In IAG 2001 Scientific Assembly,
dc.relation.referencesenBudapest, Hungary.
dc.relation.referencesenDrewes, H. (1998). Combination of VLBI, SLR and
dc.relation.referencesenGPS determined station velocities for actual plate
dc.relation.referencesenkinematic and crustal deformation models.
dc.relation.referencesenIn Geodesy on the Move (pp. 377–382). Springer,
dc.relation.referencesenBerlin, Heidelberg.
dc.relation.referencesenEubanks, T. M. (1993). Interactions between the
dc.relation.referencesenatmosphere, oceans and crust: Possible oceanic
dc.relation.referencesensignals in Earth rotation. Advances in Space
dc.relation.referencesenResearch, 13(11), 291–300.
dc.relation.referencesenFrische, A., & Sündermann, J. (1990). The seasonal
dc.relation.referencesenangular momentum of the thermohaline ocean
dc.relation.referencesencirculation. In Earth’s Rotation From Eons to
dc.relation.referencesenDays (pp. 108–126). Springer, Berlin, Heidelberg.
dc.relation.referencesenFuruya, M., & Hamano, Y. (1998). Effect of the
dc.relation.referencesenPacific Ocean on the Earth’s seasonal wobble
dc.relation.referenceseninferred from National Center for Environmental
dc.relation.referencesenPrediction ocean analysis data. Journal of
dc.relation.referencesenGeophysical Research: Solid Earth, 103(B5),10131–10140.
dc.relation.referencesenFylatj'ev V. P. (2007). The influence of rotational
dc.relation.referenceseneffects on the tectonics of the planet (on the
dc.relation.referencesenexample of the transition zone from the Asian
dc.relation.referencesencontinent to the Pacific Ocean). Rotational
dc.relation.referencesenprocesses in Geology and Physics. Moscow., 341–360 (in Russian).
dc.relation.referencesenKhain, V. E., & A. I. Poletayev. (2007). Rotation
dc.relation.referencesentectonics of the Earth. Science in Russia, (6), 14–21 (in Russian).
dc.relation.referencesenNational Geophysical Data Center. (2006, July 26).
dc.relation.referencesenETOPO5 Data and Documentation | ngdc.noaa.gov. Retrieved from https://www.ngdc.noaa.gov/mgg/global/etopo5.HTML
dc.relation.referencesenPandul, Y. (2017). Geodetic astronomy applied to the
dc.relation.referencesensolution of engineering and geodesic problems.
dc.relation.referencesenLitres.
dc.relation.referencesenProject Overview. (n.d.). Retrieved from http://ggosatm.hg.tuwien.ac.at/
dc.relation.referencesenSottili, G., Palladino, D. M., Cuffaro, M., & Doglioni,
dc.relation.referencesenC. (2015). Earth’s rotation variability triggers
dc.relation.referencesenexplosive eruptions in subduction zones. Earth,
dc.relation.referencesenPlanets and Space, 67(1), 208. https://doi.org/10.1186/s40623-015-0375-z
dc.relation.referencesenSeitz, F., & Schmidt, M. (2005). Atmospheric and
dc.relation.referencesenoceanic contributions to Chandler wobble
dc.relation.referencesenexcitation determined by wavelet
dc.relation.referencesenfiltering. Journal of Geophysical Research: Solid
dc.relation.referencesenEarth,110(B11). doi:10.1029/2005jb003826
dc.relation.referencesenNavigation and service. (n.d.). Retrieved fromhttps://www.iers.org/IERS/EN/Home/home_node.html
dc.relation.referencesenJohnson, T. J., Wilson, C. R., & Chao, B. F. (1999).
dc.relation.referencesenOceanic angular momentum variability estimated
dc.relation.referencesenfrom the Parallel Ocean Climate Model, 1988–1998. Journal of Geophysical Research: SolidEarth,104(B11), 25183-25195.doi:10.1029/1999jb900231
dc.relation.referencesenKhain, V. E. (2010). Constructing a truly global
dc.relation.referencesenmodel of Earth’s dynamics: basic principles.
dc.relation.referencesenRussian Geology and Geophysics, 51(6), 587–591.
dc.relation.referencesenTretjak K. R., Alj-Alusi F. K. F. About relationship of
dc.relation.referencesenuneven of the Earth rotational movement and
dc.relation.referencesenAntarctic tectonic plate. Ukrainian Antarctic
dc.relation.referencesenJournal, (14), 43–57 (in Ukrainian).
dc.relation.referencesenTretyak, K., Forat, A., & Holubinka, Y. (2017).
dc.relation.referencesenInvestigation of Changes of the Kinematic
dc.relation.referencesenParameters of Antarctic Tectonic Plate Using Data
dc.relation.referencesenObservations of Permanent GNSS Stations.
dc.relation.referencesenReports on Geodesy and Geoinformatics, 103(1).doi:10.1515/rgg-2017-0010
dc.relation.referencesenKane, M. F. (1972). Rotational Inerfia of Continents:
dc.relation.referencesenA Proposed Link between Polar Wandering and
dc.relation.referencesenPlate Tectonics. Science, 175(4028), 1355–1357.doi:10.1126/science.175.4028.1355
dc.relation.referencesenNastula, J., & Ponte, R. M. (1999). Further evidence
dc.relation.referencesenfor oceanic excitation of polar motion.
dc.relation.referencesenGeophysical Journal International, 139(1), 123–130. doi:10.1046/j.1365-246x.1999.00930.x
dc.relation.referencesenLink to our Data Products Page:. (n.d.). Retrievedfrom http://geodesy.unr.edu/
dc.relation.referencesenPonte, R. M., & Gutzler, D. S. (1991). The Madden-
dc.relation.referencesenJulian oscillation and the angular momentum
dc.relation.referencesenbalance in a barotropic ocean model. Journal of
dc.relation.referencesenGeophysical Research: Oceans, 96(P.1), 835–842.doi:10.1029/90jc02277
dc.relation.referencesenPonte, R. M., & Stammer, D. (2000). Global and
dc.relation.referencesenregional axial ocean angular momentum signals and
dc.relation.referencesenlength-of-day variations (1985–1996). Journal of
dc.relation.referencesenGeophysical Research: Oceans, 105(P.7), 17161–17171. doi:10.1029/1999jc000157
dc.relation.referencesenPonte, R. M., & Stammer, D. (1999). Role of ocean
dc.relation.referencesencurrents and bottom pressure variability on
dc.relation.referencesenseasonal polar motion. Journal of Geophysical
dc.relation.referencesenResearch: Oceans, 104(P.10), 23393–23409.doi:10.1029/1999jc900222
dc.relation.referencesenPonte, R. M., & Rosen, R. D. (1994). Oceanic angular
dc.relation.referencesenmomentum and torques in a general circulation
dc.relation.referencesenmodel. Journal of physical oceanography, 24(9),1966–1977.
dc.relation.referencesenPonte, R. M. (1990). Barotropic motions and the
dc.relation.referencesenexchange of angular momentum between the oceans
dc.relation.referencesenand solid Earth. Journal of Geophysical Research,95(P.7), 11369. doi:10.1029/jc095ic07p11369
dc.relation.referencesenPonte, R. M., Stammer, D., & Marshall, J. (1998).
dc.relation.referencesenOceanic signals in observed motions of the Earths
dc.relation.referencesenpole of rotation. Nature, 391(6666), 476–479.doi:10.1038/35126.
dc.relation.referencesenPonte, R. M. (1997). Oceanic excitation of daily to
dc.relation.referencesenseasonal signals in Earth rotation: Results from a
dc.relation.referencesenconstant-density numerical model. Geophysical
dc.relation.referencesenJournal International, 130(2), 469–474.doi:10.1111/j.1365-246x.1997.tb05662.x
dc.relation.referencesenSchettino, A. (1999). Computational methods for
dc.relation.referencesencalculating geometric parameters of tectonic
dc.relation.referencesenplates. Computers & Geosciences, 25(8), 897–907. doi:10.1016/s0098-3004(99)00054-0
dc.relation.referencesenScripps Orbit and Permanent Array Center (SOPAC).
dc.relation.referencesen(n.d.). Retrieved from http://sopac.ucsd.edu/
dc.relation.referencesenSella, G. F., Dixon, T. H., & Mao, A. (2002).
dc.relation.referencesenREVEL: A model for Recent plate velocities from
dc.relation.referencesenspace geodesy. Journal of Geophysical Research:
dc.relation.referencesenSolid Earth, 107(B4). doi:10.1029/2000jb000033
dc.relation.referencesenJin, S., & Zhu, W. (2004). A revision of the
dc.relation.referencesenparameters of the NNR-NUVEL-1A plate velocity
dc.relation.referencesenmodel. Journal of Geodynamics, 38(1), 85–92.doi:10.1016/j.jog.2004.03.004
dc.relation.referencesenTretyak, K. R., & Vovk, A. I. (2016). Differentation
dc.relation.referencesenof the rotational movements of the european
dc.relation.referencesencontinents Earth crust. Acta Geodynamica et
dc.relation.referencesenGeomaterialia, 13(1), 181.
dc.relation.referencesenVikulin, A. (2015). Geodynamics as wave dynamics
dc.relation.referencesenof the medium composed of rotating
dc.relation.referencesenblocks. Geodynamics & Tectono-physics, 6(3),345–364. doi:10.5800/gt-2015-6-3-0185
dc.relation.referencesenVikulin, A. V., Makhmudov, Kh. F., Ivanchin, A. G.,
dc.relation.referencesenGerus, A. I., & Dolgaya, A. A. (2016). On the
dc.relation.referencesenwave and reid properties of the Earth’s crust. Solid
dc.relation.referencesenState Physics, 58 (3), 547–557.
dc.relation.referencesenJiang, W., E, D., Zhan, B., & Liu, Y. (2009). New
dc.relation.referencesenModel of Antarctic Plate Motion and Its
dc.relation.referencesenAnalysis. Chinese Journal of Geophysics, 52(1),23-32. i:10.1002 /cjg2. 1323
dc.relation.referencesenWu, X., Ray, J., & Dam, T. V. (2012). Geocenter
dc.relation.referencesenmotion and its geodetic and geophysicalimplications. Journal of Geodynamics, 58, 44–61.doi:10.1016/j.jog.2012.01.007
dc.citation.journalTitleГеодинаміка : науковий журнал
dc.citation.issue1 (24)
dc.citation.spage5
dc.citation.epage26
dc.coverage.placenameЛьвів
dc.subject.udc528.481
Appears in Collections:Геодинаміка. – 2018. – №1(24)

Files in This Item:
File Description SizeFormat 
2018n1__24__Tretyak_K-Investigation_of_the_interrelationship_5-26.pdf2.52 MBAdobe PDFView/Open
2018n1__24__Tretyak_K-Investigation_of_the_interrelationship_5-26__COVER.png482.58 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.