Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/44935
Full metadata record
DC FieldValueLanguage
dc.contributor.authorБубела, Т. З.
dc.contributor.authorФедишин, Т. І.
dc.date.accessioned2019-05-15T09:48:14Z-
dc.date.available2019-05-15T09:48:14Z-
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.identifier.citationБубела Т. З. Підсистема збирання даних для кіберфізичної системи моніторингу агровиробництва та її верифікації / Т. З. Бубела, Т. І. Федишин // Вимірювальна техніка та метрологія : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2018. — Том 79. — № 1. — С. 28–33.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44935-
dc.description.abstractПрийняття правильних керівних рішень у системі контролю агровиробництва великою мірою залежить від ступеня достовірності інформації про стан об’єктів довкілля. Особливого значення ці питання набувають під час моніторингу виробництва, яке передбачає вирощування продукції на екологічно чистих ґрунтах. Моніторинг параметрів ґрунтів повинен складатися із систематичних спостережень за їх станом, фіксування змін, їх оцінювання та керування. Одним із найважливіших завдань, що постало перед Україною сьогодні, є забезпечення сталого розвитку регіонів та стабільного економічного зростання на основі застосування інноваційних методів підвищення ефективності в різних галузях економіки, зокрема в системі агропромислового комплексу. Модернізування подібних систем управління повинно полягати у впровадженні інноваційних технологій на основі побудови кіберфізичних систем (КФС). З цією метою у статті розроблено конструкцію підсистеми збирання інформації для КФС моніторингу процесу агровиробництва зернових культур, відповідне програмне забезпечення та програму верифікації запропонованої підсистеми.
dc.description.abstractAcceptance of the correct decision in the agro-production control system to great extent depends on the degree of reliability of environmental information. These issues become quite important while monitoring production which involves the products cultivation on environmentally friendly soils. Monitoring of soil parameters includes the primary state, recording of changes, their evaluation and management. Important challenge for nowadays Ukraine seems to be ensuring the sustainable development of regions and stable economic growth through the application of innovative methods of improving economic efficiency mainly in agro-industrial complex. Modernization of measuring systems could be carried out by introducing innovative technologies based on cyber-physical systems. So, the design of gathering information subsystem for the CPS process monitoring, the corresponding software and the verification program of the proposed subsystem are developed. On the basis of the analysis of the existing state of such subsystems in the agricultural production, in particular soil control, it was established that generally accepted recommendations regarding the formation of soil structure parameters and their research methods for the operational provision of the requirements for the functioning of monitoring systems do not exist. Classical physical and chemical methods are generally implemented in laboratories and are unsuitable for field conditions. Therefore, the aim of current study is to develop the information subsystem for the CPS control of agricultural production as also the draft verification program for such system. In order to adapt the general structure of the CPS to the task of controlling the production of grain crops, it was subdivided into sub-tasks that are: preparation of agricultural lands for sowing; process of production (cultivation); the process of certification of products and so on. For each of the CPS levels, the structural elements undergo some modifications, and the unification of the requirements is ensured both at the level of the research object (soil, water, air, etc.) and in relation to the finished product (grain). In general, the main stages of this process are structured in order to construct the CPS for grain crops production. In order to solve this problem the subsystem is proposed that allows the rapid testing of open soil and responds instantly to changes in its parameters. Using the Wi-Fi module ESP8266 this subsystem remotely monitors the humidity and temperature of the ground in real time. Subsystem of collecting and transmitting information to CPS is characterized by the choice of a plurality of object parameters from the corresponding measuring arrays and databases. To implement proposed technology the particular cyberphysical system software is studied fit for production of grain crops. In the first stage of growing technology, namely, the location of grains in the crop, the user has to indicate the precursor for the crop that is planned for sowing. Next step is to obtain measurement information on humidity and soil temperature. Having worked out this information, the program gives the result on whether you can sow this culture. The following stages involve the adoption of decisions on the amount of fertilizer, the readiness of the grain crop to sow, and the calculation of the massive rate of seeding of grain crops. At the final stage, the CPS gives indication on how to properly harvest the grain crop, depending on its degree of readiness, by processing the data on the moisture content of the grain and the height of the stem height. Software has several view modes; each of them provides the separate stage of the program It can be implemented in smartphone with Android operating system. In order to minimize the risks of receiving inaccurate information in the monitoring system of agricultural production, the program for its verification is developed. The calibration interval for the proposed subsystem is calculated in 1.5 years.
dc.format.extent28-33
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofВимірювальна техніка та метрологія : міжвідомчий науково-технічний збірник, 1 (79), 2018
dc.subjectкіберфізична система
dc.subjectагровиробництво
dc.subjectалгоритм збирання інформації
dc.subjectверифікація
dc.subjectcyber-physical systems
dc.subjectagricultural production
dc.subjectalgorithm of information gathering
dc.subjectverification
dc.titleПідсистема збирання даних для кіберфізичної системи моніторингу агровиробництва та її верифікації
dc.title.alternativeData acquisition subsystem for cyber-physical systems of agricultural production monitoring and its verification
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.contributor.affiliationНаціональний університет «Львівська політехніка»
dc.format.pages6
dc.identifier.citationenBubela T. Z. Data acquisition subsystem for cyber-physical systems of agricultural production monitoring and its verification / T. Z. Bubela, T. I. Fedyshyn // Vymiriuvalna tekhnika ta metrolohiia : mizhvidomchyi naukovo-tekhnichnyi zbirnyk. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — Vol 79. — No 1. — P. 28–33.
dc.relation.references1. Системи управління вимірюваннями. Вимоги до процесів вимірювання та вимірювального обладнання: ДСТУISO 10012:2005 (ISO 10012:2003 IDT). – [Чинний від 2007-01-01]. – К.: Держспоживстандарт України, 2007. – 19 с. – (Національний стандарт України).
dc.relation.references2. Мельник А. Кіберфізичні системи: проблеми створення та напрями розвитку / А. О. Мельник // Вісник Національного університету "Львівська політехніка". Комп’ютерні системи та мережі. – 2014. – № 806. – С. 154–161.
dc.relation.references3. Бубела Т. З. Програмне забезпечення етапу збирання інформації для кіберфізичної системи контролю органічного виробництва / Т. З. Бубела, Т. І. Федишин // Technical Using of Measurement – 2017: матеріали Всеукр. наук.-техн. конф. молодих вчених у царині метрології, 24–29 січня 2017 р., – Славське, 2017. – С. 26–28.
dc.relation.references4. Haluschak P. (2006). Laboratory Methods of Soil Analysis. Canada–Manitoba Soil Survey, 132.
dc.relation.references5. Philip C., Juan C., Aciego P., Wu Yuping, Xu Jianming.(2012). Microbial Indicators of Soil Quality in Upland Soils. Chapter: Molecular Environmental Soil Science Part of the series Progress in Soil Science, 413–428.
dc.relation.references6. Zornoza R., Acosta J., Bastida F., Domínguez S., Toledo D., Faz A. (2015). Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil, 1, 173–185. doi:10.5194/soil-1-173-2015
dc.relation.references7. Doolittle J. A., Brevik E. C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014,223–225, 33–45.
dc.relation.references8. Dorigo W., Wagner W., Hohensinn R., Hahn S., Paulik C., Xaver A. (2011). The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci, 15, 1675–1698. doi:10.5194/hess-15-1675-2011
dc.relation.references9. Закон України “Про метрологію та метрологічну діяльність”, №1314-VIІ від 05.06.2014 р. / Верховна Рада України. – Офіц. вид. – К.: Парлам. вид-во, 2014. – (Бібліотека офіційних видань). – 28 с. – (Закон України).
dc.relation.referencesen1. Control system measuring. Requirements to the processes of measuring and measuring equipment: ДСТУ ISO 10012:2005(ISO 10012: 2003 IDT). – [Operating from 2007-01-01]. – К.: Dergspogyvstandard of Ukraine, 2007. 19 p.s -(National standard of Ukraine).
dc.relation.referencesen2. Melnyk A. O. (2016). Cyber-physical systems: problems of creation and directions of development / of А. О. Melnyk // Announcer of the Lviv Polytechnique National University. Computer systems and networks. No. 806. – P. 154–161.
dc.relation.referencesen3. Bubela T. Z. (2017). Software of the data accusation stage for cyber-physical systems of organic production / T. Bubela, T. Fedyshyn // Technical Use of Measurement: Materials of the Ukrainian Scientific and Technical Conference of Young Scientists in the Area of Metrology, January 24-29, 2017, Slavske, Ukraine.
dc.relation.referencesen4. Haluschak, P. (2006). Laboratory Methods of Soil Analysis. Canada–Manitoba Soil Survey, P. 132.
dc.relation.referencesen5. Philip, C., Juan, C., Aciego, P., Wu Yuping, Xu Jianming.(2012). Microbial Indicators of Soil Quality in Upland Soils. Chapter: Molecular Environmental Soil Science Part of the series Progress in Soil Science, p. 413–428.
dc.relation.referencesen6. Zornoza, R., Acosta, J., Bastida, F., Domínguez, S., Toledo, D., Faz A. (2015). Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. Soil, 1, 173–185. doi:10.5194/soil-1-173-2015
dc.relation.referencesen7. Doolittle, J. A.; Brevik, E. C. (2014) The use of electromagnetic induction techniques in soils studies. Geoderma, p. 223–225.
dc.relation.referencesen8. Dorigo, W., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A. (2011). The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci, 15, p. 1675–1698. doi:10.5194/hess-15-1675-2011
dc.relation.referencesen9. Law of Ukraine "About metrology and metrological activity",No. 1314 – VIІ from 05.06.2014 / Verkhovna Rada of Ukraine. – К.:Library of official editions, 28 p.
dc.citation.journalTitleВимірювальна техніка та метрологія : міжвідомчий науково-технічний збірник
dc.citation.volume79
dc.citation.issue1
dc.citation.spage28
dc.citation.epage33
dc.coverage.placenameЛьвів
Appears in Collections:Вимірювальна техніка та метрологія. – 2018. – Випуск 79, №1

Files in This Item:
File Description SizeFormat 
2018v79n1_Bubela_T_Z-Data_acquisition_subsystem_28-33.pdf527.77 kBAdobe PDFView/Open
2018v79n1_Bubela_T_Z-Data_acquisition_subsystem_28-33__COVER.png574.78 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.