Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/44890
Full metadata record
DC FieldValueLanguage
dc.contributor.authorНаконечний, О.
dc.contributor.authorШевчук, Ю.
dc.contributor.authorNakonechnyi, O.
dc.contributor.authorShevchuk, I.
dc.date.accessioned2019-05-07T14:01:54Z-
dc.date.available2019-05-07T14:01:54Z-
dc.date.created2018-01-15
dc.date.issued2018-01-15
dc.identifier.citationNakonechnyi O. Stability under stochastic perturbation of solutions of mathematical models of information spreading process with external control / O. Nakonechnyi, I. Shevchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 66–73.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44890-
dc.description.abstractНаведено загальну схему аналізу стохастичної стiйкості за першим наближенням в околi точок стiйкості моделі розповсюдження довільної кількості типів iнформацiї на прикладах узагальненої моделі з стацiонарними параметрами та моделi з нестаціонар- ними параметрами та спецiальним представленням зовнiшнього впливу. Результати числового експерименту демонструють практичнi можливостi цiєї схеми. Отриманi результати дали змогу визначати для параметрiв моделi допустимi областi, значен- ня з яких будуть гарантувати асимптотичну стiйкiсть у середньоквадратичному за першим наближенням в околi стацiонарних точок.
dc.description.abstractIn this paper mathematical model of spreading any number of information types with external influences is considered. The model takes the form of n (number of information channels) non-linear Ito stochastic differential equations. Conditions for asymptotic stability in quadratic average in first-approximation of the special points are considered for general stationary model and special case with non-stationary parameters. The results of example are presented for the special case of the base model with stationary parameters.
dc.format.extent66-73
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (5), 2018
dc.subjectматематична модель поширення інформації
dc.subjectстохастична стійкість
dc.subjectасимптотична стійкість у середньоквадратичному
dc.subject“білий” шум
dc.subjectmathematical model of information spreading process
dc.subjectstochastic stability
dc.subjectasymptotic stability in quadratic average
dc.subject“white” noise
dc.titleStability under stochastic perturbation of solutions of mathematical models of information spreading process with external control
dc.title.alternativeСтійкість під час стохастичних збурень розв’язків у математичних моделях розповсюдження інформації зі зовнішніми впливами
dc.typeArticle
dc.rights.holder© 2018 Lviv Polytechnic National University CMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University CMM IAPMM NASU
dc.contributor.affiliationКиївський національний університет імені Тараса Шевченка
dc.contributor.affiliationTaras Shevchenko National University of Kyiv
dc.format.pages8
dc.identifier.citationenNakonechnyi O. Stability under stochastic perturbation of solutions of mathematical models of information spreading process with external control / O. Nakonechnyi, I. Shevchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 66–73.
dc.relation.references[1] MikhailovA.P., MarevtsevaN.A. Models of Information Warfare. Mathematical Models and Computer Simulations. 3 (4), 251–259 (2012).
dc.relation.references[2] MikhailovA.P., PetrovA.P., PronchevaO.G., MarevtsevaN.A. Mathematical Modeling of Information Warfare in a Society. Mediterranean Journal of Social Sciences. 6 (5), 27–35 (2015).
dc.relation.references[3] NakonechnyiO.G., Zinko P.M. Confrontation problems with the dynamics Gompertzian systems. Journal of Computational and Applied Mathematics. 3 (120), 50–60 (2015), (in Ukrainian).
dc.relation.references[4] NakonechnyiO.G., Shevchuk I.M. Mathematical model of information spreading process with nonstationary parameters. Bulletin of Taras Shevchenko National University of Kiev. Series Physics and Mathematics. 3, 98–105 (2016), (in Ukrainian).
dc.relation.references[5] Shevchuk I.M. Stability of solutions of mathematical models of information spreading process with external control. Journal of Computational and Applied Mathematics. 1 (124), 99–111 (2017), (in Ukrainian).
dc.relation.references[6] NakonechnyiO.G. Best-mean estimates in models of information confrontation. Abstracts XXIV International Conference “Problem of decision making under uncertainties”. Cesky Rudolec, Czech Republic. September 1 5. P. 114–115 (2014).
dc.relation.references[7] NakonechnyiO.G., Zinko P.M. Estimates of unsteady parameters in model of information confrontation. Abstracts XXVIII International Conference “Problem of decision making under uncertainties”. Brno, Czech Republic. August 25–30. P. 82–83 (2016).
dc.relation.references[8] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Averaged optimal predictive estimation of mathematical models of information spreading process under uncertainty. Bulletin of Taras Shevchenko National University of Kiev. Series Physics and Mathematics. 2, 122–127 (2017).
dc.relation.references[9] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Predictive estimation of mathematical models of information spreading process under uncertainty. System Research and Information Technologies. 4, 54–65 (2017), (in Ukrainian).
dc.relation.references[10] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Analysis of non-stationary mathematical models of information spreading process under uncertainty. Abstracts of International Scientific Conference “Modern Problems of Mathematical Modeling, Computational Mathematical Methods and Information Technologies”. Rivne, Ukraine. P. 108–110 (2018), (in Ukrainian).
dc.relation.references[11] DemidovichB.P. Lectures on the mathematical theory of stability. Moscow, Nauka (1967), (in Russian).
dc.relation.referencesen[1] MikhailovA.P., MarevtsevaN.A. Models of Information Warfare. Mathematical Models and Computer Simulations. 3 (4), 251–259 (2012).
dc.relation.referencesen[2] MikhailovA.P., PetrovA.P., PronchevaO.G., MarevtsevaN.A. Mathematical Modeling of Information Warfare in a Society. Mediterranean Journal of Social Sciences. 6 (5), 27–35 (2015).
dc.relation.referencesen[3] NakonechnyiO.G., Zinko P.M. Confrontation problems with the dynamics Gompertzian systems. Journal of Computational and Applied Mathematics. 3 (120), 50–60 (2015), (in Ukrainian).
dc.relation.referencesen[4] NakonechnyiO.G., Shevchuk I.M. Mathematical model of information spreading process with nonstationary parameters. Bulletin of Taras Shevchenko National University of Kiev. Series Physics and Mathematics. 3, 98–105 (2016), (in Ukrainian).
dc.relation.referencesen[5] Shevchuk I.M. Stability of solutions of mathematical models of information spreading process with external control. Journal of Computational and Applied Mathematics. 1 (124), 99–111 (2017), (in Ukrainian).
dc.relation.referencesen[6] NakonechnyiO.G. Best-mean estimates in models of information confrontation. Abstracts XXIV International Conference "Problem of decision making under uncertainties". Cesky Rudolec, Czech Republic. September 1 5. P. 114–115 (2014).
dc.relation.referencesen[7] NakonechnyiO.G., Zinko P.M. Estimates of unsteady parameters in model of information confrontation. Abstracts XXVIII International Conference "Problem of decision making under uncertainties". Brno, Czech Republic. August 25–30. P. 82–83 (2016).
dc.relation.referencesen[8] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Averaged optimal predictive estimation of mathematical models of information spreading process under uncertainty. Bulletin of Taras Shevchenko National University of Kiev. Series Physics and Mathematics. 2, 122–127 (2017).
dc.relation.referencesen[9] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Predictive estimation of mathematical models of information spreading process under uncertainty. System Research and Information Technologies. 4, 54–65 (2017), (in Ukrainian).
dc.relation.referencesen[10] NakonechnyiO.G., Zinko P.M., Shevchuk I.M. Analysis of non-stationary mathematical models of information spreading process under uncertainty. Abstracts of International Scientific Conference "Modern Problems of Mathematical Modeling, Computational Mathematical Methods and Information Technologies". Rivne, Ukraine. P. 108–110 (2018), (in Ukrainian).
dc.relation.referencesen[11] DemidovichB.P. Lectures on the mathematical theory of stability. Moscow, Nauka (1967), (in Russian).
dc.citation.journalTitleMathematical Modeling and Computing
dc.citation.volume5
dc.citation.issue1
dc.citation.spage66
dc.citation.epage73
dc.coverage.placenameLviv
dc.subject.udc517.9
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 1

Files in This Item:
File Description SizeFormat 
2018v5n1_Nakonechnyi_O-Stability_under_stochastic_66-73.pdf847.47 kBAdobe PDFView/Open
2018v5n1_Nakonechnyi_O-Stability_under_stochastic_66-73__COVER.png361.38 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.