DC Field | Value | Language |
dc.contributor.author | Chernysh, Yelizaveta | |
dc.contributor.author | Plyatsuk, Leonid | |
dc.contributor.author | Gabbassova, Sabina | |
dc.date.accessioned | 2019-03-25T11:16:04Z | - |
dc.date.available | 2019-03-25T11:16:04Z | - |
dc.date.created | 2018-02-01 | |
dc.date.issued | 2018-02-01 | |
dc.identifier.citation | Chernysh Y. Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis / Yelizaveta Chernysh, Leonid Plyatsuk, Sabina Gabbassova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 115–120. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/44782 | - |
dc.description.abstract | Ecological and biochemical analysis of
transformations of sulfur compounds of natural and
technogenic genesis is carried out in the article.
Biochemical analysis was based on metabolic models of
bacteria Thiobacillus sp., Acidithiobacillus sp. etc. and
the study of ecological trophic groups of microorganisms
using the KEGG database to establish the regularities of
sulfur transformations produced using secondary raw
materials. The ways of attracting bacterially transformed
sulfur by plant systems as an environmentally safe
direction for improving S-nutrition in the ecosystem
were determined. | |
dc.format.extent | 115-120 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Environmental Problems, 2 (3), 2018 | |
dc.relation.uri | http://www.mpimp-golm.mpg.de/5892/2hoefgen | |
dc.relation.uri | https://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pubmed/19645821 | |
dc.relation.uri | http://www.kegg.jp/keggbin/show_pathway?ko00920+K13811 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/ | |
dc.relation.uri | https://doi.org/10.1139/w98-223 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/ | |
dc.subject | ecological and biochemical analysis | |
dc.subject | sulfur compounds | |
dc.subject | metabolic models | |
dc.subject | agro-ecosystem | |
dc.subject | secondary raw materials | |
dc.title | Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2018 | |
dc.rights.holder | © Chernysh Yе., Plyatsuk L., Gabbassova S., 2018 | |
dc.contributor.affiliation | Sumy State University | |
dc.format.pages | 6 | |
dc.identifier.citationen | Chernysh Y. Environmental biochemical analysis of sulfur compound transformation of natural and technogenic genesis / Yelizaveta Chernysh, Leonid Plyatsuk, Sabina Gabbassova // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 115–120. | |
dc.relation.references | [1] Höfgen R. Amino Acid and Sulfur Metabolism. Information from site of Department Willmitzer of The Max Planck Institute of Molecular Plant Physiology. –2018 – Available at: http://www.mpimp-golm.mpg.de/5892/2hoefgen | |
dc.relation.references | [2] Palego L. Sulfur Metabolism and Sulfur-Containing Amino Acids: I- Molecular Effectors / L. Palego, L. Betti, G. Giannaccini // Biochem Pharmacol (Los Angel). – 2015. – No 4: 158. doi: 10.4172/2167-0501.1000158. – Available at: https://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099 | |
dc.relation.references | [3] Gahan J. The role of bacteria and mycorrhiza in plant sulfur supply / J. Gahan, A. Schmalenberger // Front Plant Sci. – 2014. – No 5: 723. doi: 10.3389/fpls.2014.00723 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179 | |
dc.relation.references | [4] Anantharaman K. Sulfur oxidation genes in diverse deep-sea viruses / K. Anantharaman, M. B. Duhaime, J. A. Breier, K. A. Wendt, B. M. Toner, G. J. Dick // Science. – 2014. – Vol. 344(6185). – P. 757–760. – Available at: https://www.ncbi.nlm.nih.gov/pubmed /24789974 | |
dc.relation.references | [5] Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea / Ghosh W., Dam B. // FEMS Microbiol Rev. – 2009. – No. 33(6). – P. 999–1043. doi: 10.1111/j.1574-6976.2009.00187.x. – Available at: https://www.ncbi.nlm.nih.gov/pubmed/19645821 | |
dc.relation.references | [6] KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet – Available at: http://www.kegg.jp/keggbin/show_pathway?ko00920+K13811. | |
dc.relation.references | [7] Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis / J. Valdés, F. Veloso, E. Jedlicki, D. Holmes // BMC Genomics. – 2003. – Vol. 4: 51. doi: 10.1186/1471-2164-4-51 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/ | |
dc.relation.references | [8] Suzuki I. Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions / I. Suzuki // Canadian Journal of Microbiology. – 1999. – Vol. 45(2). – P. 97–105. – Available at: https://doi.org/10.1139/w98-223 | |
dc.relation.references | [9] Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans / Huaqun Yin, Xian Zhang, Xiaoqi Li [etc.] // BMC Microbiol. – 2014. – Vol. 14: 179. doi:10.1186/1471-2180-14-179 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/ | |
dc.relation.references | [10] Chernish Ye. Opportunity of biochemical process for phosphogypsum utilization / Ye. Chernish, L. Plyatsuk // The Journal of Solid waste technology and management. – 2016. – Vol. 42, No. 2. – P. 108–115. | |
dc.relation.references | [11] Plyatsuk L. D. The Removal of Hydrogen Sulfide in the Biodesulfurization System Using Granulated Phosphogypsum / L. D. Plyatsuk , Y. Y. Chernysh // Eurasian Chemico-Technological Journal. – 2016. – Vol. 18, No. 1. – P. 47–54. | |
dc.relation.referencesen | [1] Höfgen R. Amino Acid and Sulfur Metabolism. Information from site of Department Willmitzer of The Max Planck Institute of Molecular Plant Physiology. –2018 – Available at: http://www.mpimp-golm.mpg.de/5892/2hoefgen | |
dc.relation.referencesen | [2] Palego L. Sulfur Metabolism and Sulfur-Containing Amino Acids: I- Molecular Effectors, L. Palego, L. Betti, G. Giannaccini, Biochem Pharmacol (Los Angel), 2015, No 4: 158. doi: 10.4172/2167-0501.1000158, Available at: https://www.omicsonline.org/open-access/sulfur-metabolism-andsulfurcontaining-amino-acids-i-molecular-effectors-2167-0501.1000158.php?aid=39099 | |
dc.relation.referencesen | [3] Gahan J. The role of bacteria and mycorrhiza in plant sulfur supply, J. Gahan, A. Schmalenberger, Front Plant Sci, 2014, No 5: 723. doi: 10.3389/fpls.2014.00723 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267179 | |
dc.relation.referencesen | [4] Anantharaman K. Sulfur oxidation genes in diverse deep-sea viruses, K. Anantharaman, M. B. Duhaime, J. A. Breier, K. A. Wendt, B. M. Toner, G. J. Dick, Science, 2014, Vol. 344(6185), P. 757–760, Available at: https://www.ncbi.nlm.nih.gov/pubmed /24789974 | |
dc.relation.referencesen | [5] Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea, Ghosh W., Dam B., FEMS Microbiol Rev, 2009, No. 33(6), P. 999–1043. doi: 10.1111/j.1574-6976.2009.00187.x, Available at: https://www.ncbi.nlm.nih.gov/pubmed/19645821 | |
dc.relation.referencesen | [6] KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet – Available at: http://www.kegg.jp/keggbin/show_pathway?ko00920+K13811. | |
dc.relation.referencesen | [7] Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis, J. Valdés, F. Veloso, E. Jedlicki, D. Holmes, BMC Genomics, 2003, Vol. 4: 51. doi: 10.1186/1471-2164-4-51 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC324559/ | |
dc.relation.referencesen | [8] Suzuki I. Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions, I. Suzuki, Canadian Journal of Microbiology, 1999, Vol. 45(2), P. 97–105, Available at: https://doi.org/10.1139/w98-223 | |
dc.relation.referencesen | [9] Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans, Huaqun Yin, Xian Zhang, Xiaoqi Li [etc.], BMC Microbiol, 2014, Vol. 14: 179. doi:10.1186/1471-2180-14-179 – Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109375/ | |
dc.relation.referencesen | [10] Chernish Ye. Opportunity of biochemical process for phosphogypsum utilization, Ye. Chernish, L. Plyatsuk, The Journal of Solid waste technology and management, 2016, Vol. 42, No. 2, P. 108–115. | |
dc.relation.referencesen | [11] Plyatsuk L. D. The Removal of Hydrogen Sulfide in the Biodesulfurization System Using Granulated Phosphogypsum, L. D. Plyatsuk , Y. Y. Chernysh, Eurasian Chemico-Technological Journal, 2016, Vol. 18, No. 1, P. 47–54. | |
dc.citation.journalTitle | Environmental Problems | |
dc.citation.volume | 3 | |
dc.citation.issue | 2 | |
dc.citation.spage | 115 | |
dc.citation.epage | 120 | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Environmental Problems. – 2018. – Vol. 3, No. 2
|