Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/44781
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSabir, Qurat-Ul An
dc.contributor.authorNadeem, Muhammad
dc.contributor.authorNguyen-Quang, Tri
dc.date.accessioned2019-03-25T11:16:03Z-
dc.date.available2019-03-25T11:16:03Z-
dc.date.created2018-02-01
dc.date.issued2018-02-01
dc.identifier.citationSabir Q. A. Mathematical simulation for algal growth in the water reservoirs of Moncton city (New Brunswick, Canada) by the supervised learning classifier / Qurat-Ul An Sabir, Muhammad Nadeem, Tri Nguyen-Quang // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 103–114.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44781-
dc.description.abstractMathematical model is a good approach to deal with the coupling effects of governing parameters in algal bloom growth. Among manymodels to deal with combining factors and data-based supervised learning classifiers, the Artificial Neural Network (ANN) has the most significant impact on the development of bloom pattern. The objective of this paper is to use the Artificial Neural Network (ANN) model to simulate the growth of harmful algae under environmental factors that can lead to bloom pattern in two reservoirs of Moncton city (Canada) with the collected data fromtwo years of observation 2016–2017.
dc.format.extent103-114
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 2 (3), 2018
dc.subjectArtificial Neural Network (ANN)
dc.subjectCyanobacteria
dc.subjectHarmful Algal Blooms (HAB)
dc.subjectModified Redfield Ratio (MRR)
dc.subjectSupervised learning classifier
dc.titleMathematical simulation for algal growth in the water reservoirs of Moncton city (New Brunswick, Canada) by the supervised learning classifier
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder© Qurat-Ul An Sabir, Tri Nguyen-Quang, 2018
dc.contributor.affiliationDalhousie University
dc.format.pages12
dc.identifier.citationenSabir Q. A. Mathematical simulation for algal growth in the water reservoirs of Moncton city (New Brunswick, Canada) by the supervised learning classifier / Qurat-Ul An Sabir, Muhammad Nadeem, Tri Nguyen-Quang // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 3. — No 2. — P. 103–114.
dc.relation.references[1] Huang, W., & Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research, 36(1), 356–362.
dc.relation.references[2] Maier, H. R., and Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15(1), 101–124.
dc.relation.references[3] McCulloch, W. S. and Pitts, W. (1943), “A logical calculus of the ideas immanent in nervous activity”, The bulletin of mathematical biophysics, Vol. 5, No. 4,pp. 115–133.
dc.relation.references[4] Torrecilla, J. S., Otero, L., & Sanz, P. D. (2004). A neural network approach for thermal/pressure food processing. Journal of Food Engineering, 62(1), 89–95.
dc.relation.references[5] Madic, M. J., & Radovanović, M. R. (2011). Optimal selection of ANN training and architectural parameters using Taguchi method: A case study. FME Transactions,39(2), 79–86.
dc.relation.references[6] Elangasinghe, M. A., Singhal, N., Dirks, K. N., & Salmond, J. A. (2014). Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmospheric pollution research, 5(4), 696–708.
dc.relation.references[7] Pandey, D. S., Das, S., Pan, I., Leahy, J. J., & Kwapinski, W. (2016). Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste management, 58, 202–213.
dc.relation.references[8] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000). Artificial neural networks in hydrology. II: Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124–137.
dc.relation.references[9] Khademi, F., Akbari, M., Jamal, S. M., & Nikoo, M. (2017). Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Frontiers of Structural and Civil Engineering, 11(1), 90–99.
dc.relation.referencesen[1] Huang, W., & Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research, 36(1), 356–362.
dc.relation.referencesen[2] Maier, H. R., and Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15(1), 101–124.
dc.relation.referencesen[3] McCulloch, W. S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", The bulletin of mathematical biophysics, Vol. 5, No. 4,pp. 115–133.
dc.relation.referencesen[4] Torrecilla, J. S., Otero, L., & Sanz, P. D. (2004). A neural network approach for thermal/pressure food processing. Journal of Food Engineering, 62(1), 89–95.
dc.relation.referencesen[5] Madic, M. J., & Radovanović, M. R. (2011). Optimal selection of ANN training and architectural parameters using Taguchi method: A case study. FME Transactions,39(2), 79–86.
dc.relation.referencesen[6] Elangasinghe, M. A., Singhal, N., Dirks, K. N., & Salmond, J. A. (2014). Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmospheric pollution research, 5(4), 696–708.
dc.relation.referencesen[7] Pandey, D. S., Das, S., Pan, I., Leahy, J. J., & Kwapinski, W. (2016). Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste management, 58, 202–213.
dc.relation.referencesen[8] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000). Artificial neural networks in hydrology. II: Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124–137.
dc.relation.referencesen[9] Khademi, F., Akbari, M., Jamal, S. M., & Nikoo, M. (2017). Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Frontiers of Structural and Civil Engineering, 11(1), 90–99.
dc.citation.journalTitleEnvironmental Problems
dc.citation.volume3
dc.citation.issue2
dc.citation.spage103
dc.citation.epage114
dc.coverage.placenameLviv
Appears in Collections:Environmental Problems. – 2018. – Vol. 3, No. 2

Files in This Item:
File Description SizeFormat 
2018v3n2_Sabir_Q_A-Mathematical_simulation_103-114.pdf481.87 kBAdobe PDFView/Open
2018v3n2_Sabir_Q_A-Mathematical_simulation_103-114__COVER.png486.05 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.