Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/44106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorБайцар, Роман
dc.contributor.authorКвіт, Роман
dc.contributor.authorBaitsar, Roman
dc.contributor.authorKvit, Roman
dc.date.accessioned2019-02-08T12:34:14Z-
dc.date.available2019-02-08T12:34:14Z-
dc.date.created2018-03-29
dc.date.issued2018-03-29
dc.identifier.citationBaitsar R. Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state / Roman Baitsar, Roman Kvit // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 45–50.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44106-
dc.description.abstractРозглянуто комплекс технолого-метрологічних досліджень щодо розроблення методів посадки і закріплення ниткоподібних монокристалів на різних матеріалах підкладок (пружних елементів). Показано шляхи уникнення неконтрольованих спотворень вихідної бездефектної структури монокристала, які можуть виникати у вузлах його кріплення і знижувати добротність коливань резонатора, яка є основною характеристикою якості тензоперетворювача. Механічний стан монокристала повинен відповідати напруженню, за якого його нагрівання від електричного струму живлення не спричинило би помітного стиску монокристала. Досліджено температурну залежність деформації монокристалічного резонатора – чутливого елемента вібраційно-частотного сенсора в робочому температурному діапазоні. Проаналізовано чинники, що визначають температурно-залежну складову деформації резонансного тензоперетворювача з напівпро- відникового монокристала. Вказано напрями оптимізації характеристик вібраційно-частотних сенсорів шляхом цілеспрямованого контролю початкового рівня деформації монокристала, що досягається вибором відповідних конструкційних матеріалів, а також технологічними способами їх виготовлення.
dc.description.abstractThe complex of technological and metrological researches concerning development of filamentous monocrystals application and fixing methods on various materials of substrate (elastic elements) is considered. The ways of uncontrolled distortions avoiding of the initial monocrystal defect-free structure that can occur at the nodes of its mounting and reduce the Q-value of the resonator oscillations, which is the main characteristic of the tensotransducer quality, is shown. With this the monocrystal mechanical state should correspond to the stress at which its heating from the electric power supply current would not cause a noticeable monocrystal compression. The temperature dependence of deformation of a monocrystal resonator, which is a sensitive element of a vibration and frequency sensor in the operation temperature range, is studied. The factors that determine the temperature dependent deformation component of the resonant tensotransducer made of the semiconductor monocrystal are analyzed. The directions of vibration and frequency sensors characteristics optimization are indicated by purposeful control of the monocrystal deformation initial level, which is achieved by the choice of appropriate structural materials, as well as technological methods of their production.
dc.format.extent45-50
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (4), 2018
dc.subjectниткоподібний монокристал
dc.subjectнапівпровідник
dc.subjectрезонатор
dc.subjectтензоперетворювач
dc.subjectчастота
dc.subjectсенсор
dc.subjectfilamentous monocrystal
dc.subjectsemiconductor
dc.subjectresonator
dc.subjecttensotransducer
dc.subjectfrequency
dc.subjectsensor
dc.titleTemperature dependence estimation of the vibration and frequency sensor resonator mechanical state
dc.title.alternativeОцінювання температурної залежності механічного стану резонатора вібраційно-частотного сенсора
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder© 2018 The Authors. Published by Lviv Polytechnic National University
dc.contributor.affiliationНаціональний університет «Львівська політехніка»
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages6
dc.identifier.citationenBaitsar R. Temperature dependence estimation of the vibration and frequency sensor resonator mechanical state / Roman Baitsar, Roman Kvit // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 45–50.
dc.relation.references[1] Kudryavtsev, V., Lysenko, A., Milokhin, N., Tishchenko, N. (1974). Presision frequency converters of automated control and management systems. Moscow: Energy. (in Russian)
dc.relation.references[2] Kartsev, E., Korotkov, V. (1982). Unified string converters. Moscow: Mechanical engineering. (in Russian)
dc.relation.references[3] Ashanin, V., Stepanov, A. (1985). The use of filamentous monocrystals in measuring technology. Measuring technique, 4, 57–59. (in Russian)
dc.relation.references[4] Tymoshenko, N. (1989) Trends in the development of mechanical quantities foreign sensors. Instruments and control systems, 11, 44–46. (in Russian)
dc.relation.references[5] Haueis, M., Dual, J., Cavalloni C., Gnielka M., Buser R. (2000). Packaged bulk micromachined resonant force sensor for high temperature applications. SPIE - Design, Test, Integration and Packaging of MEMS/MOEMS, Paris, May 2000, 4019, 379–388.
dc.relation.references[6] Zhang, W., Turner, K.L. (2005). Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors and Actuators, A, 122, 23–30.
dc.relation.references[7] Zhang, W. M., Hu, K. M., Peng, Z. K., Meng, G. (2015). Tunable micro- and nanomechanical resonators. Sensors, 15, 26478–26566.
dc.relation.references[8] Liu, H., Zhang, C., Weng, Z., Guo, Y., Wang, Z. (2017). Resonance frequency readout circuit for a 900 MHz SAW device. Sensors, 17 (9),2131.
dc.relation.references[9] Bogdanova, N., Baitsar, R., Voronin, V., Krasnogenov, E. (1993). Semiconductor string pressure sensor. Sensors and actuators, A, 39 (2),125–128.
dc.relation.references[10] Baitsar, R. (1996). Current state and prospects of resonance sensors development. Proceedings of the International scientific and technical conference “Instrument construction – 96“, Vinnytsa, 1996, 59. (in Ukrainian)
dc.relation.references[11] Baitsar, R., Varshava, S. (2001). Semiconductor microsensors. Text book. Lviv, Ukraine: CSTEI. (in Ukrainian)
dc.relation.references[12] Novikova, S. (1974). Thermal expansion of solid bodies. Moscow: Nauka. (in Russian)
dc.relation.referencesen[1] Kudryavtsev, V., Lysenko, A., Milokhin, N., Tishchenko, N. (1974). Presision frequency converters of automated control and management systems. Moscow: Energy. (in Russian)
dc.relation.referencesen[2] Kartsev, E., Korotkov, V. (1982). Unified string converters. Moscow: Mechanical engineering. (in Russian)
dc.relation.referencesen[3] Ashanin, V., Stepanov, A. (1985). The use of filamentous monocrystals in measuring technology. Measuring technique, 4, 57–59. (in Russian)
dc.relation.referencesen[4] Tymoshenko, N. (1989) Trends in the development of mechanical quantities foreign sensors. Instruments and control systems, 11, 44–46. (in Russian)
dc.relation.referencesen[5] Haueis, M., Dual, J., Cavalloni C., Gnielka M., Buser R. (2000). Packaged bulk micromachined resonant force sensor for high temperature applications. SPIE - Design, Test, Integration and Packaging of MEMS/MOEMS, Paris, May 2000, 4019, 379–388.
dc.relation.referencesen[6] Zhang, W., Turner, K.L. (2005). Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors and Actuators, A, 122, 23–30.
dc.relation.referencesen[7] Zhang, W. M., Hu, K. M., Peng, Z. K., Meng, G. (2015). Tunable micro- and nanomechanical resonators. Sensors, 15, 26478–26566.
dc.relation.referencesen[8] Liu, H., Zhang, C., Weng, Z., Guo, Y., Wang, Z. (2017). Resonance frequency readout circuit for a 900 MHz SAW device. Sensors, 17 (9),2131.
dc.relation.referencesen[9] Bogdanova, N., Baitsar, R., Voronin, V., Krasnogenov, E. (1993). Semiconductor string pressure sensor. Sensors and actuators, A, 39 (2),125–128.
dc.relation.referencesen[10] Baitsar, R. (1996). Current state and prospects of resonance sensors development. Proceedings of the International scientific and technical conference "Instrument construction – 96", Vinnytsa, 1996, 59. (in Ukrainian)
dc.relation.referencesen[11] Baitsar, R., Varshava, S. (2001). Semiconductor microsensors. Text book. Lviv, Ukraine: CSTEI. (in Ukrainian)
dc.relation.referencesen[12] Novikova, S. (1974). Thermal expansion of solid bodies. Moscow: Nauka. (in Russian)
dc.citation.journalTitleEnergy Engineering and Control Systems
dc.citation.volume4
dc.citation.issue1
dc.citation.spage45
dc.citation.epage50
dc.coverage.placenameLviv
Appears in Collections:Energy Engineering And Control Systems. – 2018. – Vol. 4, No. 1

Files in This Item:
File Description SizeFormat 
2018v4n1_Baitsar_R-Temperature_dependence_estimation_45-50.pdf257.64 kBAdobe PDFView/Open
2018v4n1_Baitsar_R-Temperature_dependence_estimation_45-50__COVER.png437.31 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.