DC Field | Value | Language |
dc.contributor.author | Яцишин, Святослав | |
dc.contributor.author | Полянський, Ігор | |
dc.contributor.author | Yatsyshyn, Svyatoslav | |
dc.contributor.author | Polyanskiy, Igor | |
dc.date.accessioned | 2018-11-14T08:53:42Z | - |
dc.date.available | 2018-11-14T08:53:42Z | - |
dc.date.created | 2017-03-28 | |
dc.date.issued | 2017-03-28 | |
dc.identifier.citation | Яцишин С. Дослідження можливостей покращення якості виробів 3D-принтерної технології / Святослав Яцишин, Ігор Полянський // Вимірювальна техніка та метрологія : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2017. — Том 78. — С. 74–79. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/42975 | - |
dc.description.abstract | Проаналізовано методи контролю якості виробництва на 3D-принтері для технології селективного
лазерного плавлення та лазерного припікання. | |
dc.description.abstract | The analysis methods of quality control on production 3D- printer for selective laser sintering technology of special
products via the sizes of which we can estimate the geometric parameters and via an additional control system we can
high up their quality in real time.
Increasing demands for precision measurement raises new problems of optimization of mathematical models of
measuring transformations, and adequate processing of experimental data. This problem in modern MIs is particularly
relevant due to the capabilities of inexpensive hardware implementation in basis of modern microelectronic components
that opens the possibility of computing realization directly in the measuring path.
Obtaining the necessary precision in many cases is only possible in the case of optimal mathematical models that
provide in a certain sense the best approach of MI general transformation function. Rational choice of mathematical
model of transformation function in many cases improves the measuring accuracy or expands the measurement range
of preset accuracy.
In this regard, becomes important choice of suitable criterion during processing the experimental data. Normal criteria
mostly applicable for analyzing experimental data, is the most common method of mean squared errors, which consists
in minimizing the sum of squares of the errors and computing the average of these squares. Unfortunately, the rootmean-
square approximation does not provide achievement of the lowest difference between the estimator and function
that is estimated at all points of observation, which is desirable during the precision processing of experimental data.
Therefore, for solving the calibration tasks should be used the minimax criterion which ensures the minimum possible
errors of reproducing the experimental calibration characteristics.
Physical modeling is an experimental method of scientific research, which implies the substitution of the studied
physical process by other similar to it of the same physical nature – by model.
Physical model is a smaller or larger physical copy of an object. The geometries of model and object are often similar in
the sense that one is a rescaling of the other; in such cases the scale is an important characteristic. Geometrically
similar to the original the model can be both reduced and increased in the comparison with original sizes, and the model
of process or phenomenon may differ from the real process by the quantitative physical characteristics such as power,
energy, process pressure etc. In a broad sense, any physical experiment conducted in laboratory, including an
experiment with natural object or part of it, is a physical modeling. The latter is based on the similarity theory and
dimensional analysis, establishing the similarities criteria. The identity of the latter for a nature and the model provides
the ability to transfer the experimental results obtained by physical modeling, in natural conditions. With the implementation of relevant conditions of physical modeling, i.e. the identity of similarity criteria, the values of variables
that characterize a real phenomenon of proportionality of the similar points in space and at similar moments of time,
become to be proportional to values of the same variables for the model. Presence of such proportionality allows
perform recalculation of experimental results that were obtained on a model by multiplying the value of each of the
identified variables on a constant for all values a given dimension set factor – the similarity factor. | |
dc.description.abstract | Проанализированы методы контроля качества производства на 3D-принтере для технологий селективного
лазерного плавления и припекания. | |
dc.format.extent | 74-79 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.relation.ispartof | Вимірювальна техніка та метрологія : міжвідомчий науково-технічний збірник (78), 2017 | |
dc.relation.uri | https://all3dp.com/fdm-vs-sla/ | |
dc.relation.uri | https://3dprinter.ua/3d-print-quality/ | |
dc.relation.uri | http://can-touch.ru/blog/modelirovanie-razreshenie-sls-3d/ | |
dc.relation.uri | http://www.dissercat | |
dc.subject | метрологія | |
dc.subject | контроль якості | |
dc.subject | моніторинг | |
dc.subject | аналіз | |
dc.subject | 3D-принтер | |
dc.subject | додаткове виробництво | |
dc.subject | metrology | |
dc.subject | quality control | |
dc.subject | monitoring | |
dc.subject | analysis | |
dc.subject | 3D-printer | |
dc.subject | additional production | |
dc.subject | метрология | |
dc.subject | контроль качества | |
dc.subject | мониторинг | |
dc.subject | анализ | |
dc.subject | 3D-принтер | |
dc.subject | дополнительное производство | |
dc.title | Дослідження можливостей покращення якості виробів 3D-принтерної технології | |
dc.title.alternative | Investigation of possibilities for improving the quality of 3D-printing products | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2017 | |
dc.rights.holder | © Яцишин Святослав, Полянський Ігор, 2017 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.format.pages | 6 | |
dc.identifier.citationen | Yatsyshyn S. Investigation of possibilities for improving the quality of 3D-printing products / Svyatoslav Yatsyshyn, Igor Polyanskiy // Vymiriuvalna tekhnika ta metrolohiia : mizhvidomchyi naukovo-tekhnichnyi zbirnyk. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2017. — Vol 78. — P. 74–79. | |
dc.relation.references | 1. Про доцільність використання засобів 3D друку для підвищення точності статичних і динамічних до- сліджень важільно-обертових механізмів / [В. М. Орел, В. Т. Щетинін, О. О. Ченчева та ін.] // Вісник КрНУ імені Михайла Остроградського. Вип. 1/2015 (90). Частина 2. – 2015. – С. 111–117. | |
dc.relation.references | 2. Grieser F. FDM vs SLA: 3D Printing Explained and Compared [Електронний ресурс] / Franz Grieser. – 2015. – Режим доступу до ресурсу: https://all3dp.com/fdm-vs-sla/. | |
dc.relation.references | 3. Ликбез о точ- ности и качестве современной 3Д печати. FDM, SLA 3D принтеры [Електронний ресурс]. – Режим доступу: https://3dprinter.ua/3d-print-quality/. | |
dc.relation.references | 4. Правила модели-\рования и разрешение деталей при 3D-печати методом SLS [Електронний ресурс]. – Режим доступу:http://can-touch.ru/blog/modelirovanie-razreshenie-sls-3d/. | |
dc.relation.references | 5. Сапрыкина Н. А. Совершенствование технологии формирования поверхностного слоя изделий, получен- ных послойным лазерным спеканием // Научная библио- тека диссертаций и авторефератов disserCat [Елект- ронний ресурс]. – Режим доступу: http://www.dissercat. com/content/sovershenstvovanie-tekhnologii-formirovaniya | |
dc.relation.references | 6. Kruth J.-P. Additive Manufacturing of Metals via Selective Laser Melting Process Aspects and Material Developments / Jean-Pierre Kruth, Sasan Dadbakhsh, Jan Van Humbeeck, Karolien Kempen, Jef Vleugels and Bey Vrancken // Additive Manufacturing: Innovations, Advances, and Applications / [edited by T. S. Srivatsan, T. S. Sudarshan]. – London: CRC Press, 2016. – P. 70–96. | |
dc.relation.references | 7. Cyber-Physical Systems. Metrological Issues, Edited by. S.Yatsyshyn, B.Stadnyk, 2016, IFSA Publishing, Barcelona, Spane. | |
dc.relation.references | 8. Dorozhovets M., Burdega M. Measurement of a Surface Temperature Distribution Using Multi-element Resistance Sensors // Proceeding of the IEEE 9-th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. 21–23 Sept. Bucharest, Romania, Vol. 1. – IDAACS, – 2017. – Р. 602–606. | |
dc.relation.referencesen | 1. Pro dotsilnist vykorystannia zasobiv 3D druku dlia pidvyshchennia tochnosti statychnykh i dynamichnykh do- slidzhen vazhilno-obertovykh mekhanizmiv, [V. M. Orel, V. T. Shchetynin, O. O. Chencheva and other], Visnyk KrNU imeni Mykhaila Ostrohradskoho. Iss. 1/2015 (90). Part 2, 2015, P. 111–117. | |
dc.relation.referencesen | 2. Grieser F. FDM vs SLA: 3D Printing Explained and Compared [Electronic resource], Franz Grieser, 2015, Access mode: https://all3dp.com/fdm-vs-sla/. | |
dc.relation.referencesen | 3. Likbez o toch- nosti i kachestve sovremennoi 3D pechati. FDM, SLA 3D printery [Electronic resource], Access mode: https://3dprinter.ua/3d-print-quality/. | |
dc.relation.referencesen | 4. Pravila modeli-\rovaniia i razreshenie detalei pri 3D-pechati metodom SLS [Electronic resource], Access mode:http://can-touch.ru/blog/modelirovanie-razreshenie-sls-3d/. | |
dc.relation.referencesen | 5. Saprykina N. A. Sovershenstvovanie tekhnolohii formirovaniia poverkhnostnoho sloia izdelii, poluchen- nykh posloinym lazernym spekaniem, Nauchnaia biblio- teka dissertatsii i avtoreferatov disserCat [Elekt- ronnii resurs], Access mode: http://www.dissercat. com/content/sovershenstvovanie-tekhnologii-formirovaniya | |
dc.relation.referencesen | 6. Kruth J.-P. Additive Manufacturing of Metals via Selective Laser Melting Process Aspects and Material Developments, Jean-Pierre Kruth, Sasan Dadbakhsh, Jan Van Humbeeck, Karolien Kempen, Jef Vleugels and Bey Vrancken, Additive Manufacturing: Innovations, Advances, and Applications, [edited by T. S. Srivatsan, T. S. Sudarshan], London: CRC Press, 2016, P. 70–96. | |
dc.relation.referencesen | 7. Cyber-Physical Systems. Metrological Issues, Edited by. S.Yatsyshyn, B.Stadnyk, 2016, IFSA Publishing, Barcelona, Spane. | |
dc.relation.referencesen | 8. Dorozhovets M., Burdega M. Measurement of a Surface Temperature Distribution Using Multi-element Resistance Sensors, Proceeding of the IEEE 9-th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. 21–23 Sept. Bucharest, Romania, Vol. 1, IDAACS, 2017, R. 602–606. | |
dc.citation.journalTitle | Вимірювальна техніка та метрологія : міжвідомчий науково-технічний збірник | |
dc.citation.volume | 78 | |
dc.citation.spage | 74 | |
dc.citation.epage | 79 | |
dc.coverage.placename | Львів | |
dc.subject.udc | 536.58 | |
dc.subject.udc | 536.52 | |
dc.subject.udc | 62.492 | |
Appears in Collections: | Вимірювальна техніка та метрологія. – 2017. – Випуск 78
|