Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/42564
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMykyichuk, Mykola
dc.contributor.authorMarkiv, Volodymyr
dc.coverage.temporal25-27 June 2018
dc.date.accessioned2018-09-03T11:41:12Z-
dc.date.available2018-09-03T11:41:12Z-
dc.date.created2018-06-25
dc.date.issued2018-06-25
dc.identifier.citationMykyichuk M. Peculiarities of remote-piloted vehicles on-board navigation complex construction / Mykola Mykyichuk, Volodymyr Markiv // Computational linguistics and intelligent systems, 25-27 June 2018. — Lviv : Lviv Polytechnic National University, 2018. — Vol 2 : Workshop. — P. 161–170. — (Section II. Intelligent Systems).
dc.identifier.issn2523-4013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/42564-
dc.description.abstractThe article dwells upon the peculiarities of on-board navigation complex construction. It is highlighted that the optimal method for constructing on-board navigation complex is integration into single complex of sensors and systems with the integration of measurement information. The core of on-board navigation complex should be built on the basis of free-form inertial navigation system. To ensure the piloting tasks, the on-board equipment includes system of air signals. On the basis of the air signals system and magnetic compass air course counting is performed, which together with the inertial calculation allow to obtain comprehensive solution in an autonomous mode. It is important to include in the on-board navigation complex receiver of GNSS signals. Thus, the ideology of constructing the on-board navigation complex initially consists in the integration of measurements from the sensors and systems that make up its structure. It is emphasized that directly on-board navigation complex consists from inertial sensors, GNSS and magnetic compass receivers and also interface with air signal system. Specific types of sensors and systems are selected in accordance with the requirements of software and algorithmic support of onboard navigation complex.
dc.format.extent161-170
dc.language.isoen
dc.publisherLviv Polytechnic National University
dc.relation.ispartofComputational linguistics and intelligent systems (2), 2018
dc.relation.urihttp://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
dc.subjectRemote-piloted vehicle
dc.subjectOn-board navigation complex
dc.subjectNavigation system
dc.subjectSystem sensors
dc.titlePeculiarities of remote-piloted vehicles on-board navigation complex construction
dc.typeConference Abstract
dc.rights.holder© 2018 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.
dc.contributor.affiliationLviv Polytechnic National University, Lviv, Ukraine
dc.format.pages10
dc.identifier.citationenMykyichuk M. Peculiarities of remote-piloted vehicles on-board navigation complex construction / Mykola Mykyichuk, Volodymyr Markiv // Computational linguistics and intelligent systems, 25-27 June 2018. — Lviv : Lviv Polytechnic National University, 2018. — Vol 2 : Workshop. — P. 161–170. — (Section II. Intelligent Systems).
dc.relation.references1. Борискин А.Д., Вейцель А.В., Вейцель В.А., Жодзишский М.И., Милютин Д.С.
dc.relation.references2. Аппаратура высокоточного позиционирования по сигналам глобальных навигационных спутниковых систем: приёмники-потребители навигационной информации, 2010
dc.relation.references3. Микийчук М., Марків В. Особливості системи управління безпілотними літальними апаратами, Матеріали V Міжнародної науково-практичної конференції “Математика. Інформаційні технології. Освіта, 69–71, 2017
dc.relation.references4. Микийчук М., Марків В. Особливості GPS-спуфінгу щодо управління БПЛА, матеріали 6-ої Міжнародної наукової конференції ІКС-2017, 61-62, 2017
dc.relation.references5. Харин Е.Г., Копелович В.А., Копылов И.А., Требухов А.В., Ларионов С.В. Результаты лётных испытаний интегрированной инерциально-спутниковой навигационной системы, 2014
dc.relation.references6. Austin R. Unmanned aircraft systems UAVs design, development and deployment. - West
dc.relation.references7. Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons Ltd, 2010
dc.relation.references8. Barton J.: Fundamentals of Small Unmanned Aircraft Flight. Johns Hopkins APL Technical Digest. V. 31, No. 2 , 132-149, 2012
dc.relation.references9. Bond L.: Overview of GPS Interference Issues. GPS Interference Symp., Volpe National Transportation System Center, 28-32, 1998
dc.relation.references10. Brown A.K., Yan Lu Performance Test Results of an Integrated GPS/MEMS Inertial Navigation Package / ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, CA, 2004
dc.relation.references11. Forssel, B. Olsen T.: Jamming Susceptibility of Some Civil GPS Receivers. GPS World, No. 1, 54-58. 2003
dc.relation.references12. Grewal M.S., Weill L.R., Andrews A.P. Global Positioning Systems, Inertial Navigation, and Integration. – New York: John Wiley & Sons, Inc, 2001.
dc.relation.references13. Kim J.-H., Sukkarieh S. Flight Test Results of GPS/INS Navigation Loop for an Autonomous Unmanned Aerial Vehicle (UAV) / ION GPS, 24-27 September 2002, Portland, OR, 2002
dc.relation.references14. Key E.: Technique to Counter GPS Spoofing. Int. Memorandum, MITRE Corporation, 1995.
dc.relation.references15. Lawrence A. Modern Inertial Technology (Navigation, Guidance, and Control). – New York:Springer-Verlag Inc, 1998.
dc.relation.references16. Martin, M.: Non-linear DSGE Models and The Optimized Central Difference Particle Filter, 2-45, 2010
dc.relation.references17. Markiv V.: Analysis of remote-piloted vehicles use and control system description”., Computer sciences and information technologies, No. 843, 347-351, 2016
dc.relation.references18. Markiv V.: Justification of remote-piloted vehicles use and metrology supply improvement. 5th Int. Scientific Conf. ІCS-2016, 20–21, 2016
dc.relation.references19. Mykyichuk M., Markiv V. Metrology tasks of airphotoshooting by remote-piloted vehicle, Вісник “Радіоелектроніка та телекомунікації”, В-во НУЛП.,№ 874, 57-61, 2017
dc.relation.references20. Mykyichuk M., Markiv V. Peculiarities of fractal analysis of remote-piloted vehicles recognition, VІ-а Міжнародна науково-практична конференція "Практичне застосування нелінійних динамічних систем в інфокомунікаціях.,. 20–21, 2017
dc.relation.references21. Mykyichuk M., Markiv V. Peculiarities of the radio signals and hindrances in the navigation system of the remote-piloted vehicles, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, IAPGOŚ, № 8 (1), 40- 43, 2018
dc.relation.references22. Neitzel, F., Klonowski, J.: Mobile 3d mapping with a low-cost UAV system. Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII-1/C22, 67-70.
dc.relation.references23. Roach. D.: Dimensionality analysis of patterns: fractal measurements, Computers Geosciences, 1993, 849-869.
dc.relation.references24. Salychev O.S. Applied Inertial Navigation: Problems and Solutions, BMSTU, 2004.
dc.relation.references25. Sandau K.: Measuring fractal dimension and complexity - an alternative approach with an application, 164-176, 1993
dc.relation.references26. Savage P. G. Strapdown Analytics Part1&2. – Maple Plain, Minnesota: Strapdown Associates,Inc, 2000.
dc.relation.references27. Strang G., Borre K. Linear Algebra, Geodesy, and GPS. – USA, Wellesley: Wellesley-
dc.relation.references28. Cambridge Press, 1997.
dc.relation.references29. Tsui J. B.-Y. Fundamentals of Global Positioning System Receivers. A Software Approach. –Hoboken, New Jersey: John Wiley & Sons, Inc, 2005.
dc.relation.references30. Vincenty T. Direct and Inverse Solution of Geodesics on the Ellipsoid with Application of
dc.relation.references31. Nested Equations [Электронный ресурс] / Survey review.- Kingston Road, Tolworth, Surey,1975. – Режим доступа: http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf – 21.01.2015.
dc.relation.references32. Winkler S., Schulz H.-W., Buschmann M., Vorsmann P. Testing GPS/INS Integration for
dc.relation.references33. Autonomous Mini and Micro Aerial Vehicles / ION GNSS 18th International Technical Meeting of the Satellite Division, 13-16 September 2005, Long Beach, CA.
dc.relation.referencesen1. Boriskin A.D., Veitsel A.V., Veitsel V.A., Zhodzishskii M.I., Miliutin D.S.
dc.relation.referencesen2. Apparatura vysokotochnoho pozitsionirovaniia po sihnalam hlobalnykh navihatsionnykh sputnikovykh sistem: priemniki-potrebiteli navihatsionnoi informatsii, 2010
dc.relation.referencesen3. Mykyichuk M., Markiv V. Osoblyvosti systemy upravlinnia bezpilotnymy litalnymy aparatamy, Materialy V Mizhnarodnoi naukovo-praktychnoi konferentsii "Matematyka. Informatsiini tekhnolohii. Osvita, 69–71, 2017
dc.relation.referencesen4. Mykyichuk M., Markiv V. Osoblyvosti GPS-spufinhu shchodo upravlinnia BPLA, materialy 6-oi Mizhnarodnoi naukovoi konferentsii IKS-2017, 61-62, 2017
dc.relation.referencesen5. Kharin E.H., Kopelovich V.A., Kopylov I.A., Trebukhov A.V., Larionov S.V. Rezultaty letnykh ispytanii intehrirovannoi inertsialno-sputnikovoi navihatsionnoi sistemy, 2014
dc.relation.referencesen6. Austin R. Unmanned aircraft systems UAVs design, development and deployment, West
dc.relation.referencesen7. Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons Ltd, 2010
dc.relation.referencesen8. Barton J., Fundamentals of Small Unmanned Aircraft Flight. Johns Hopkins APL Technical Digest. V. 31, No. 2 , 132-149, 2012
dc.relation.referencesen9. Bond L., Overview of GPS Interference Issues. GPS Interference Symp., Volpe National Transportation System Center, 28-32, 1998
dc.relation.referencesen10. Brown A.K., Yan Lu Performance Test Results of an Integrated GPS/MEMS Inertial Navigation Package, ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, CA, 2004
dc.relation.referencesen11. Forssel, B. Olsen T., Jamming Susceptibility of Some Civil GPS Receivers. GPS World, No. 1, 54-58. 2003
dc.relation.referencesen12. Grewal M.S., Weill L.R., Andrews A.P. Global Positioning Systems, Inertial Navigation, and Integration, New York: John Wiley & Sons, Inc, 2001.
dc.relation.referencesen13. Kim J.-H., Sukkarieh S. Flight Test Results of GPS/INS Navigation Loop for an Autonomous Unmanned Aerial Vehicle (UAV), ION GPS, 24-27 September 2002, Portland, OR, 2002
dc.relation.referencesen14. Key E., Technique to Counter GPS Spoofing. Int. Memorandum, MITRE Corporation, 1995.
dc.relation.referencesen15. Lawrence A. Modern Inertial Technology (Navigation, Guidance, and Control), New York:Springer-Verlag Inc, 1998.
dc.relation.referencesen16. Martin, M., Non-linear DSGE Models and The Optimized Central Difference Particle Filter, 2-45, 2010
dc.relation.referencesen17. Markiv V., Analysis of remote-piloted vehicles use and control system description"., Computer sciences and information technologies, No. 843, 347-351, 2016
dc.relation.referencesen18. Markiv V., Justification of remote-piloted vehicles use and metrology supply improvement. 5th Int. Scientific Conf. ICS-2016, 20–21, 2016
dc.relation.referencesen19. Mykyichuk M., Markiv V. Metrology tasks of airphotoshooting by remote-piloted vehicle, Visnyk "Radioelektronika ta telekomunikatsii", V-vo NULP.,No 874, 57-61, 2017
dc.relation.referencesen20. Mykyichuk M., Markiv V. Peculiarities of fractal analysis of remote-piloted vehicles recognition, VI-a Mizhnarodna naukovo-praktychna konferentsiia "Praktychne zastosuvannia neliniinykh dynamichnykh system v infokomunikatsiiakh.,. 20–21, 2017
dc.relation.referencesen21. Mykyichuk M., Markiv V. Peculiarities of the radio signals and hindrances in the navigation system of the remote-piloted vehicles, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, IAPGOŚ, No 8 (1), 40- 43, 2018
dc.relation.referencesen22. Neitzel, F., Klonowski, J., Mobile 3d mapping with a low-cost UAV system. Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII-1/P.22, 67-70.
dc.relation.referencesen23. Roach. D., Dimensionality analysis of patterns: fractal measurements, Computers Geosciences, 1993, 849-869.
dc.relation.referencesen24. Salychev O.S. Applied Inertial Navigation: Problems and Solutions, BMSTU, 2004.
dc.relation.referencesen25. Sandau K., Measuring fractal dimension and complexity - an alternative approach with an application, 164-176, 1993
dc.relation.referencesen26. Savage P. G. Strapdown Analytics Part1&2, Maple Plain, Minnesota: Strapdown Associates,Inc, 2000.
dc.relation.referencesen27. Strang G., Borre K. Linear Algebra, Geodesy, and GPS, USA, Wellesley: Wellesley-
dc.relation.referencesen28. Cambridge Press, 1997.
dc.relation.referencesen29. Tsui J. B.-Y. Fundamentals of Global Positioning System Receivers. A Software Approach. –Hoboken, New Jersey: John Wiley & Sons, Inc, 2005.
dc.relation.referencesen30. Vincenty T. Direct and Inverse Solution of Geodesics on the Ellipsoid with Application of
dc.relation.referencesen31. Nested Equations [Electronic resource], Survey review, Kingston Road, Tolworth, Surey,1975, Access mode: http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf – 21.01.2015.
dc.relation.referencesen32. Winkler S., Schulz H.-W., Buschmann M., Vorsmann P. Testing GPS/INS Integration for
dc.relation.referencesen33. Autonomous Mini and Micro Aerial Vehicles, ION GNSS 18th International Technical Meeting of the Satellite Division, 13-16 September 2005, Long Beach, CA.
dc.citation.spage161
dc.citation.epage170
dc.coverage.placenameLviv
Appears in Collections:Computational linguistics and intelligent systems. – 2018 р.

Files in This Item:
File Description SizeFormat 
COLINS_2018_2018v2_Mykyichuk_M-Peculiarities_of_remote_161-170.pdf2.54 MBAdobe PDFView/Open
COLINS_2018_2018v2_Mykyichuk_M-Peculiarities_of_remote_161-170__COVER.png258.08 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.