DC Field | Value | Language |
dc.contributor.author | Mykyichuk, Mykola | |
dc.contributor.author | Markiv, Volodymyr | |
dc.coverage.temporal | 25-27 June 2018 | |
dc.date.accessioned | 2018-09-03T11:41:12Z | - |
dc.date.available | 2018-09-03T11:41:12Z | - |
dc.date.created | 2018-06-25 | |
dc.date.issued | 2018-06-25 | |
dc.identifier.citation | Mykyichuk M. Peculiarities of remote-piloted vehicles on-board navigation complex construction / Mykola Mykyichuk, Volodymyr Markiv // Computational linguistics and intelligent systems, 25-27 June 2018. — Lviv : Lviv Polytechnic National University, 2018. — Vol 2 : Workshop. — P. 161–170. — (Section II. Intelligent Systems). | |
dc.identifier.issn | 2523-4013 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/42564 | - |
dc.description.abstract | The article dwells upon the peculiarities of on-board navigation
complex construction. It is highlighted that the optimal method for constructing
on-board navigation complex is integration into single complex of sensors and
systems with the integration of measurement information. The core of on-board
navigation complex should be built on the basis of free-form inertial navigation
system. To ensure the piloting tasks, the on-board equipment includes system of
air signals. On the basis of the air signals system and magnetic compass air
course counting is performed, which together with the inertial calculation allow
to obtain comprehensive solution in an autonomous mode. It is important to
include in the on-board navigation complex receiver of GNSS signals. Thus, the
ideology of constructing the on-board navigation complex initially consists in
the integration of measurements from the sensors and systems that make up its
structure. It is emphasized that directly on-board navigation complex consists
from inertial sensors, GNSS and magnetic compass receivers and also interface
with air signal system. Specific types of sensors and systems are selected in
accordance with the requirements of software and algorithmic support of onboard
navigation complex. | |
dc.format.extent | 161-170 | |
dc.language.iso | en | |
dc.publisher | Lviv Polytechnic National University | |
dc.relation.ispartof | Computational linguistics and intelligent systems (2), 2018 | |
dc.relation.uri | http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf | |
dc.subject | Remote-piloted vehicle | |
dc.subject | On-board navigation complex | |
dc.subject | Navigation system | |
dc.subject | System sensors | |
dc.title | Peculiarities of remote-piloted vehicles on-board navigation complex construction | |
dc.type | Conference Abstract | |
dc.rights.holder | © 2018 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors. | |
dc.contributor.affiliation | Lviv Polytechnic National University, Lviv, Ukraine | |
dc.format.pages | 10 | |
dc.identifier.citationen | Mykyichuk M. Peculiarities of remote-piloted vehicles on-board navigation complex construction / Mykola Mykyichuk, Volodymyr Markiv // Computational linguistics and intelligent systems, 25-27 June 2018. — Lviv : Lviv Polytechnic National University, 2018. — Vol 2 : Workshop. — P. 161–170. — (Section II. Intelligent Systems). | |
dc.relation.references | 1. Борискин А.Д., Вейцель А.В., Вейцель В.А., Жодзишский М.И., Милютин Д.С. | |
dc.relation.references | 2. Аппаратура высокоточного позиционирования по сигналам глобальных навигационных спутниковых систем: приёмники-потребители навигационной информации, 2010 | |
dc.relation.references | 3. Микийчук М., Марків В. Особливості системи управління безпілотними літальними апаратами, Матеріали V Міжнародної науково-практичної конференції “Математика. Інформаційні технології. Освіта, 69–71, 2017 | |
dc.relation.references | 4. Микийчук М., Марків В. Особливості GPS-спуфінгу щодо управління БПЛА, матеріали 6-ої Міжнародної наукової конференції ІКС-2017, 61-62, 2017 | |
dc.relation.references | 5. Харин Е.Г., Копелович В.А., Копылов И.А., Требухов А.В., Ларионов С.В. Результаты лётных испытаний интегрированной инерциально-спутниковой навигационной системы, 2014 | |
dc.relation.references | 6. Austin R. Unmanned aircraft systems UAVs design, development and deployment. - West | |
dc.relation.references | 7. Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons Ltd, 2010 | |
dc.relation.references | 8. Barton J.: Fundamentals of Small Unmanned Aircraft Flight. Johns Hopkins APL Technical Digest. V. 31, No. 2 , 132-149, 2012 | |
dc.relation.references | 9. Bond L.: Overview of GPS Interference Issues. GPS Interference Symp., Volpe National Transportation System Center, 28-32, 1998 | |
dc.relation.references | 10. Brown A.K., Yan Lu Performance Test Results of an Integrated GPS/MEMS Inertial Navigation Package / ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, CA, 2004 | |
dc.relation.references | 11. Forssel, B. Olsen T.: Jamming Susceptibility of Some Civil GPS Receivers. GPS World, No. 1, 54-58. 2003 | |
dc.relation.references | 12. Grewal M.S., Weill L.R., Andrews A.P. Global Positioning Systems, Inertial Navigation, and Integration. – New York: John Wiley & Sons, Inc, 2001. | |
dc.relation.references | 13. Kim J.-H., Sukkarieh S. Flight Test Results of GPS/INS Navigation Loop for an Autonomous Unmanned Aerial Vehicle (UAV) / ION GPS, 24-27 September 2002, Portland, OR, 2002 | |
dc.relation.references | 14. Key E.: Technique to Counter GPS Spoofing. Int. Memorandum, MITRE Corporation, 1995. | |
dc.relation.references | 15. Lawrence A. Modern Inertial Technology (Navigation, Guidance, and Control). – New York:Springer-Verlag Inc, 1998. | |
dc.relation.references | 16. Martin, M.: Non-linear DSGE Models and The Optimized Central Difference Particle Filter, 2-45, 2010 | |
dc.relation.references | 17. Markiv V.: Analysis of remote-piloted vehicles use and control system description”., Computer sciences and information technologies, No. 843, 347-351, 2016 | |
dc.relation.references | 18. Markiv V.: Justification of remote-piloted vehicles use and metrology supply improvement. 5th Int. Scientific Conf. ІCS-2016, 20–21, 2016 | |
dc.relation.references | 19. Mykyichuk M., Markiv V. Metrology tasks of airphotoshooting by remote-piloted vehicle, Вісник “Радіоелектроніка та телекомунікації”, В-во НУЛП.,№ 874, 57-61, 2017 | |
dc.relation.references | 20. Mykyichuk M., Markiv V. Peculiarities of fractal analysis of remote-piloted vehicles recognition, VІ-а Міжнародна науково-практична конференція "Практичне застосування нелінійних динамічних систем в інфокомунікаціях.,. 20–21, 2017 | |
dc.relation.references | 21. Mykyichuk M., Markiv V. Peculiarities of the radio signals and hindrances in the navigation system of the remote-piloted vehicles, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, IAPGOŚ, № 8 (1), 40- 43, 2018 | |
dc.relation.references | 22. Neitzel, F., Klonowski, J.: Mobile 3d mapping with a low-cost UAV system. Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII-1/C22, 67-70. | |
dc.relation.references | 23. Roach. D.: Dimensionality analysis of patterns: fractal measurements, Computers Geosciences, 1993, 849-869. | |
dc.relation.references | 24. Salychev O.S. Applied Inertial Navigation: Problems and Solutions, BMSTU, 2004. | |
dc.relation.references | 25. Sandau K.: Measuring fractal dimension and complexity - an alternative approach with an application, 164-176, 1993 | |
dc.relation.references | 26. Savage P. G. Strapdown Analytics Part1&2. – Maple Plain, Minnesota: Strapdown Associates,Inc, 2000. | |
dc.relation.references | 27. Strang G., Borre K. Linear Algebra, Geodesy, and GPS. – USA, Wellesley: Wellesley- | |
dc.relation.references | 28. Cambridge Press, 1997. | |
dc.relation.references | 29. Tsui J. B.-Y. Fundamentals of Global Positioning System Receivers. A Software Approach. –Hoboken, New Jersey: John Wiley & Sons, Inc, 2005. | |
dc.relation.references | 30. Vincenty T. Direct and Inverse Solution of Geodesics on the Ellipsoid with Application of | |
dc.relation.references | 31. Nested Equations [Электронный ресурс] / Survey review.- Kingston Road, Tolworth, Surey,1975. – Режим доступа: http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf – 21.01.2015. | |
dc.relation.references | 32. Winkler S., Schulz H.-W., Buschmann M., Vorsmann P. Testing GPS/INS Integration for | |
dc.relation.references | 33. Autonomous Mini and Micro Aerial Vehicles / ION GNSS 18th International Technical Meeting of the Satellite Division, 13-16 September 2005, Long Beach, CA. | |
dc.relation.referencesen | 1. Boriskin A.D., Veitsel A.V., Veitsel V.A., Zhodzishskii M.I., Miliutin D.S. | |
dc.relation.referencesen | 2. Apparatura vysokotochnoho pozitsionirovaniia po sihnalam hlobalnykh navihatsionnykh sputnikovykh sistem: priemniki-potrebiteli navihatsionnoi informatsii, 2010 | |
dc.relation.referencesen | 3. Mykyichuk M., Markiv V. Osoblyvosti systemy upravlinnia bezpilotnymy litalnymy aparatamy, Materialy V Mizhnarodnoi naukovo-praktychnoi konferentsii "Matematyka. Informatsiini tekhnolohii. Osvita, 69–71, 2017 | |
dc.relation.referencesen | 4. Mykyichuk M., Markiv V. Osoblyvosti GPS-spufinhu shchodo upravlinnia BPLA, materialy 6-oi Mizhnarodnoi naukovoi konferentsii IKS-2017, 61-62, 2017 | |
dc.relation.referencesen | 5. Kharin E.H., Kopelovich V.A., Kopylov I.A., Trebukhov A.V., Larionov S.V. Rezultaty letnykh ispytanii intehrirovannoi inertsialno-sputnikovoi navihatsionnoi sistemy, 2014 | |
dc.relation.referencesen | 6. Austin R. Unmanned aircraft systems UAVs design, development and deployment, West | |
dc.relation.referencesen | 7. Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons Ltd, 2010 | |
dc.relation.referencesen | 8. Barton J., Fundamentals of Small Unmanned Aircraft Flight. Johns Hopkins APL Technical Digest. V. 31, No. 2 , 132-149, 2012 | |
dc.relation.referencesen | 9. Bond L., Overview of GPS Interference Issues. GPS Interference Symp., Volpe National Transportation System Center, 28-32, 1998 | |
dc.relation.referencesen | 10. Brown A.K., Yan Lu Performance Test Results of an Integrated GPS/MEMS Inertial Navigation Package, ION GNSS 17th International Technical Meeting of the Satellite Division, Long Beach, CA, 2004 | |
dc.relation.referencesen | 11. Forssel, B. Olsen T., Jamming Susceptibility of Some Civil GPS Receivers. GPS World, No. 1, 54-58. 2003 | |
dc.relation.referencesen | 12. Grewal M.S., Weill L.R., Andrews A.P. Global Positioning Systems, Inertial Navigation, and Integration, New York: John Wiley & Sons, Inc, 2001. | |
dc.relation.referencesen | 13. Kim J.-H., Sukkarieh S. Flight Test Results of GPS/INS Navigation Loop for an Autonomous Unmanned Aerial Vehicle (UAV), ION GPS, 24-27 September 2002, Portland, OR, 2002 | |
dc.relation.referencesen | 14. Key E., Technique to Counter GPS Spoofing. Int. Memorandum, MITRE Corporation, 1995. | |
dc.relation.referencesen | 15. Lawrence A. Modern Inertial Technology (Navigation, Guidance, and Control), New York:Springer-Verlag Inc, 1998. | |
dc.relation.referencesen | 16. Martin, M., Non-linear DSGE Models and The Optimized Central Difference Particle Filter, 2-45, 2010 | |
dc.relation.referencesen | 17. Markiv V., Analysis of remote-piloted vehicles use and control system description"., Computer sciences and information technologies, No. 843, 347-351, 2016 | |
dc.relation.referencesen | 18. Markiv V., Justification of remote-piloted vehicles use and metrology supply improvement. 5th Int. Scientific Conf. ICS-2016, 20–21, 2016 | |
dc.relation.referencesen | 19. Mykyichuk M., Markiv V. Metrology tasks of airphotoshooting by remote-piloted vehicle, Visnyk "Radioelektronika ta telekomunikatsii", V-vo NULP.,No 874, 57-61, 2017 | |
dc.relation.referencesen | 20. Mykyichuk M., Markiv V. Peculiarities of fractal analysis of remote-piloted vehicles recognition, VI-a Mizhnarodna naukovo-praktychna konferentsiia "Praktychne zastosuvannia neliniinykh dynamichnykh system v infokomunikatsiiakh.,. 20–21, 2017 | |
dc.relation.referencesen | 21. Mykyichuk M., Markiv V. Peculiarities of the radio signals and hindrances in the navigation system of the remote-piloted vehicles, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, IAPGOŚ, No 8 (1), 40- 43, 2018 | |
dc.relation.referencesen | 22. Neitzel, F., Klonowski, J., Mobile 3d mapping with a low-cost UAV system. Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII-1/P.22, 67-70. | |
dc.relation.referencesen | 23. Roach. D., Dimensionality analysis of patterns: fractal measurements, Computers Geosciences, 1993, 849-869. | |
dc.relation.referencesen | 24. Salychev O.S. Applied Inertial Navigation: Problems and Solutions, BMSTU, 2004. | |
dc.relation.referencesen | 25. Sandau K., Measuring fractal dimension and complexity - an alternative approach with an application, 164-176, 1993 | |
dc.relation.referencesen | 26. Savage P. G. Strapdown Analytics Part1&2, Maple Plain, Minnesota: Strapdown Associates,Inc, 2000. | |
dc.relation.referencesen | 27. Strang G., Borre K. Linear Algebra, Geodesy, and GPS, USA, Wellesley: Wellesley- | |
dc.relation.referencesen | 28. Cambridge Press, 1997. | |
dc.relation.referencesen | 29. Tsui J. B.-Y. Fundamentals of Global Positioning System Receivers. A Software Approach. –Hoboken, New Jersey: John Wiley & Sons, Inc, 2005. | |
dc.relation.referencesen | 30. Vincenty T. Direct and Inverse Solution of Geodesics on the Ellipsoid with Application of | |
dc.relation.referencesen | 31. Nested Equations [Electronic resource], Survey review, Kingston Road, Tolworth, Surey,1975, Access mode: http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf – 21.01.2015. | |
dc.relation.referencesen | 32. Winkler S., Schulz H.-W., Buschmann M., Vorsmann P. Testing GPS/INS Integration for | |
dc.relation.referencesen | 33. Autonomous Mini and Micro Aerial Vehicles, ION GNSS 18th International Technical Meeting of the Satellite Division, 13-16 September 2005, Long Beach, CA. | |
dc.citation.spage | 161 | |
dc.citation.epage | 170 | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Computational linguistics and intelligent systems. – 2018 р.
|