Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/42563
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPukach, Pavlo
dc.contributor.authorHladun, Volodymyr
dc.coverage.temporal25-27 June 2018
dc.date.accessioned2018-09-03T11:41:11Z-
dc.date.available2018-09-03T11:41:11Z-
dc.date.created2018-06-25
dc.date.issued2018-06-25
dc.identifier.citationPukach P. Using dynamic neural networks for server load prediction / Pavlo Pukach, Volodymyr Hladun // Computational linguistics and intelligent systems, 25-27 June 2018. — Lviv : Lviv Polytechnic National University, 2018. — Vol 2 : Workshop. — P. 157–160. — (Section II. Intelligent Systems).
dc.identifier.issn2523-4013
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/42563-
dc.description.abstractIn this paper, the approach of using neural networks for making time series predictions of strongly nonlinear data is used. A brief examination of neural networks usage for time series predictions is given, as well as the definition and schematics of LSTM blocks. The comparison between the time delay values and the prediction accuracy is given. It is shown that certain values of time delay can greatly increase the prediction accuracy.
dc.format.extent157-160
dc.language.isoen
dc.publisherLviv Polytechnic National University
dc.relation.ispartofComputational linguistics and intelligent systems (2), 2018
dc.relation.urihttp://www.mathworks.com/help/pdfdoc/nnet/nnet
dc.subjectneural networks
dc.subjectlong short-term memory
dc.subjecttime series prediction
dc.titleUsing dynamic neural networks for server load prediction
dc.typeConference Abstract
dc.rights.holder© 2018 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. This volume is published and copyrighted by its editors.
dc.contributor.affiliationLviv Polytechnic National University, Department of Applied mathematics
dc.format.pages4
dc.identifier.citationenPukach P. Using dynamic neural networks for server load prediction / Pavlo Pukach, Volodymyr Hladun // Computational linguistics and intelligent systems, 25-27 June 2018. — Lviv : Lviv Polytechnic National University, 2018. — Vol 2 : Workshop. — P. 157–160. — (Section II. Intelligent Systems).
dc.relation.references1. M. Beale, M. Hagan, and H.Demuth, “Matlab neural network toolbox user’s guide,” The Math Works Inc., 2010, http://www.mathworks.com/help/pdfdoc/nnet/nnet ug.pdf.
dc.relation.references2. C. A. Mitrea, C. K. M. Lee, and Z. Wu, “A comparison between neural networks and traditional forecasting methods: A case study,” in International Journal of Engineering Business Management, vol. 1, no. 2 2009, pp. 19–24.
dc.relation.referencesen1. M. Beale, M. Hagan, and H.Demuth, "Matlab neural network toolbox user’s guide," The Math Works Inc., 2010, http://www.mathworks.com/help/pdfdoc/nnet/nnet ug.pdf.
dc.relation.referencesen2. C. A. Mitrea, C. K. M. Lee, and Z. Wu, "A comparison between neural networks and traditional forecasting methods: A case study," in International Journal of Engineering Business Management, vol. 1, no. 2 2009, pp. 19–24.
dc.citation.spage157
dc.citation.epage160
dc.coverage.placenameLviv
Appears in Collections:Computational linguistics and intelligent systems. – 2018 р.

Files in This Item:
File Description SizeFormat 
COLINS_2018_2018v2_Pukach_P-Using_dynamic_neural_networks_157-160.pdf1.13 MBAdobe PDFView/Open
COLINS_2018_2018v2_Pukach_P-Using_dynamic_neural_networks_157-160__COVER.png249.77 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.