Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/42384
Title: Modeling of carbon monoxide oxidation process on the two-dimensional catalyst surface
Other Titles: Моделювання процесу оксидацiї чадного газу на двовимiрнiй поверхнi каталiзатора
Authors: Kostrobij, P.
Ryzha, I.
Bibliographic description (Ukraine): Kostrobij P. Modeling of carbon monoxide oxidation process on the two-dimensional catalyst surface / P. Kostrobij, I. Ryzha // Mathematical Modeling and Сomputing. – 2016. – Volume 3, number 2. – Р. 146 –162. – Bibliography: 19 titles
Journal/Collection: Mathematical Modeling and Сomputing
Issue Date: 2016
Publisher: Publishing House of Lviv Polytechnic National University
Country (code): UA
Place of the edition/event: Львів
UDC: 538.9
Keywords: reaction of catalytic oxidation
reaction-diffusion model
mathematical modelling of reaction-diffusion processes
каталiтична реакцiя окислення
реакцiйно-дифузiйна модель
математичне моделювання реакцiйно-дифузiйних процесiв
Number of pages: 146–162
Abstract: In this paper the two-dimensional mathematical model for carbon monoxide (CO) oxidation on the surface of Platinum (Pt) catalyst is investigated accounting for the processes of the catalyst surface reconstruction and the effect of the substrate temperature. It is shown that the stability region for reaction of CO oxidation changes in two-dimensional case. Дослiджено двовимiрну математичну модель оксидацiї чадного газу (СО) на поверхнi платинового каталiзатора з урахуванням процесiв перебудови поверхнi каталiзатора та впливу температури пiдложки. Показано, що в двовимiрному випадку область стiйкостi реакцiї окислення СО змiнюється.
URI: https://ena.lpnu.ua/handle/ntb/42384
References (Ukraine): [1] Slinko M. M., Jaeger N. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Eds. Amsterdam: Elsevier; Vol. 86 (1994). [2] Baxter R. J., Hu P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002). [3] Wilf M., Dawson P. T. Adsorption and desorption of oxygen on the Pt(110) surface – a thermal desorption and LEED-AES Study. Surf. Sci. 65, 399–418 (1977). [4] Gomer R. Diffusion of adsorbates on metal surfaces. Reports on Progress in Physics. 53 (7), 917–1002 (1990). [5] Kellogg G. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168 (1985). [6] Gritsch T., Coulman D., Behm R. J., Ertl G. Mechanism of the CO-induced (1 × 2) − (1 × 1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086 (1989). [7] Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96, 9161–9172 (1992). [8] Baer M., Eiswirth M., Rotermund H. H., Ertl G. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992). [9] Gasser R. P. H., Smith. E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1 (10), 457–458 (1967). [10] Bertram M., Mikhailov A. S. Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E. 67, 036207 (2003). [11] Bzovska I. S., Mryglod I. M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010). [12] Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York: VCH Publishers (1990). [13] Cisternas Y., Holmes P., Kevrekidis I. G., Li X. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118, 3312–3328 (2003). [14] Maron S. H., Lando J. B. Fundamentals of Physical Chemistry. New York: MacMillan Publ. Comp. Inc. (1974). [15] Suchorski Y. Private comunication. [16] Shampine L. F., Reichelt M.W. The Matlab ODE suite. SIAM J. Sci. Comput. 18 (1), 1–22 (1997). [17] Patchett A. J., Meissen F., EngelW., Bradshaw A. M., Imbihl R. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Sci. 454 (1), 341–346 (2000). [18] Bzovska I. S., Mryglod I. M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. J. Phys. 61 (2), 134–142 (2016). [19] Spiel Ch., Vogel D., Suchorski Y., DrachselW., Schlogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: local reaction kinetics by PEEM. Catal. Lett. 141 (5), 625–632 (2011).
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2016. – Vol. 3, No. 2

Files in This Item:
File Description SizeFormat 
005-38-54.pdf3.34 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.