Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/42382
Title: Mathematical modeling of elastic disturbance propagation in a structure containing a porous layer saturated with gas and water
Other Titles: Математичне моделювання поширення пружних збурень у структурi, яка мiстить пористий шар, насичений газом i водою
Authors: Chekurin, V.
Pavlova, A.
Affiliation: Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
Kuyawy and Pomorze University in Bydgoszcz
Carpathian Branch of Subbotin Institute of Geophysics of NAS of Ukraine
Bibliographic description (Ukraine): Chekurin V. Mathematical modeling of elastic disturbance propagation in a structure containing a porous layer saturated with gas and water / V. Chekurin, А. Pavlova // Mathematical Modeling and Сomputing. – 2016. – Volume 3, number 2. – Р. 120 –134. – Bibliography: 14 titles.
Conference/Event: Mathematical Modeling and Сomputing
Issue Date: 2016
Publisher: Publishing House of Lviv Polytechnic National University
Country (code): UA
Place of the edition/event: Львів
UDC: 550.344
Keywords: layered structure
porous media
elastic disturbance
шаруватi структури
пористi середовища
пружнi збурення
Number of pages: 120-134
Abstract: A horizontally layered elastic structure containing a homogeneous porous layer saturated partly with gas and partly with water is considered. The paper is aimed at studying of interaction of elastic waves, caused by local pulse source, with the structure. The boundary-value problem describing the wave dynamics of the structure is formulated. A mathematical model describing distributions of the gas and water in a pore space of the porous layer depending of the amount of the gas accumulated in the layer is developed. The problem is solved with the use of Fourier transform. It was established that wavefield pattern on the free surface of the structure is dependent on amount of gas accumulated in the porous layer. Quantitative measures relating the wavefield parameters on the structure’s free surface and the amount of gas accumulated in the porous layer are introduced. The obtained results can be used to develop distance methods for accounting of amount of natural gas accumulated in underground gas storage facilities built in aquifers. Дослiджено взаємодiю пружних хвиль, зумовлених локальним iмпульсним джерелом, iз пiвбезмежною горизонтально-шаруватою структурою, що мiстить пористий шар, насичений газом i водою. Запропоновано математичну модель, яка описує розподiл газу i води в поровому просторi шару залежно вiд кiлькостi накопиченого в ньому га- зу. В межах моделi обчисленi ефективнi пружнi модулi областей пористого шару, насичених газом i водою. Сформульовано початково-крайову задачу динамiки пружних хвиль у структурi та iз застосуванням перетворення Фур’є отримано ї ї розв’язок. Iз використанням отриманого розв’язку дослiджено картину хвильового поля на вiльнiй поверхнi структури залежно вiд кiлькостi газу, нагромадженого в пористому шарi. Введено та чисельно дослiджено характеристики, якi пов’язують параметри хвильового поля на вiльнiй поверхнi iз кiлькiстю газу, нагромадженого в пористому шарi. Отриманi результати можна застосувати для розроблення дистанцiйних методiв облiку кiлькостi природного газу в пiдземних сховищах газу, споруджених у водоносних горизонтах.
URI: https://ena.lpnu.ua/handle/ntb/42382
References (Ukraine): [1] Underground Storage of Natural Gas, in Encyclopeadia of Hydrocarbons, vol. 1/ Exploration, Production and Transport. Rome: Eni. Istituto della Enciclopedia italiana (2005). [2] Gassmann F. Elastic waves through a packing of sferes. Geophysics. 16 (4), 673–685 (1951). [3] SunW., Ba J., Carcione J.M. Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model. Geophys. J. Int. 205 (1), 22–37 (2016). [4] Carcione J.M. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. 3rd edn. Elsevier Science (2015), 690 p. [5] Rubino J.G., HolligerK. Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophys. J. Int. 188, 1088–1102 (2012). [6] AkiK., Richards P.G. Quantitative Seismology. 2-nd Edition W.H. Freeman and Company (2002), 700 p. [7] FryerG. J., Frazer L.N. Seismic waves in stratified anisotropic media. Geophys. J. Roy. and Soc. 78 (4), 691–710 (1984). [8] FryerG. J., Frazer L.N. Seismic waves in stratified anisotropic media. II. Elastodynamic eigensolutions for some anisotropic systems. Geophys. J. Roy. and Soc. 91 (4), 73–101 (1987). [9] Ba J., Carcione J.M., SunW.T. Seismic attenuation due to heterogeneities of rock fabric and fluid distri- bution. Geophys. J. Int. 202 (3), 1843–1847 (2015). [10] Ba J., Carcione J.M., Nie J.X. Biot-Rayleigh theory of wave propagation in double-porosity media. J. geophys. Res. 116, 1–12 (2011). [11] SonaM. S., KangbY. J. Propagation of shear waves in a poroelastic layer constrained between two elastic layers. Applied Mathematical Modelling. 36 (8), 3685–3695 (2012). [12] HirshM.W., Smale S., DevaneyR. L. Differential equations, dynamical systems & Chaos. Academic press (2004), 418 p. [13] QuintalB., SteebH., FrehnerM., Schmalholz S.M. Quasi-static finite element modeling of seismic attenu- ation and dispersion due to wave-induced fluid flow in poroelastic media. J. geophys. Res.: Solid Earth. 116, 1–17 (2011). [14] BoruahN., ChatterjeeR. Rock physics template (RPT) analysis of well logs and seismic data for lithology and fluid classifications. Petroview. 3, 1–8 (2010).
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2016. – Vol. 3, No. 2

Files in This Item:
File Description SizeFormat 
003-12-26.pdf620.06 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.