Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/42061
Title: Development of combustion model in the industrial cyclone-calciner furnace using cfd-modeling
Other Titles: Розроблення моделі горіння в промисловій циклонній печі-декарбонізаторі методами числового моделювання
Authors: Havryliv, Roman
Maystruk, Volodymyr
Affiliation: Lviv Polytechnic National University
Bibliographic description (Ukraine): Havryliv R. Development of combustion model in the industrial cyclone-calciner furnace using cfd-modeling / Roman Havryliv, Volodymyr Maystruk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 11. — No 1. — P. 71–80.
Bibliographic description (International): Havryliv R. Development of combustion model in the industrial cyclone-calciner furnace using cfd-modeling / Roman Havryliv, Volodymyr Maystruk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 11. — No 1. — P. 71–80.
Is part of: Chemistry & Chemical Technology, 1 (11), 2017
Issue: 1
Volume: 11
Issue Date: 20-Jan-2017
Publisher: Lviv Politechnic Publishing House
Keywords: CFD-моделювання
модель горіння
моделі турбулентності
циклонна піч-декарбонізатор
CFD-modeling
combustion model
turbulence models
cyclone-calciner furnace
Number of pages: 10
Page range: 71-80
Start page: 71
End page: 80
Abstract: Розроблено тривимірну комп’ютерну мо- дель для дослідження процесу горіння в промисловій циклонній печі-декарбонізаторі. Моделювання руху потоків виконано на основі RANS-підходу з використанням різних моделей турбу- лентності. Представлені результати дають можливість спрогнозувати розподіл температури в печі, визначити кон- центрації компонентів в газовій фазі та добре узгоджуються з експериментальними даними. Дані отримані на основі комп’ютерного моделювання будуть використані в наступних теоретичних та експериментальних дослідженнях для опти- мізації конструкції апарату.
1A three-dimensional computer model has been developed for the simulation of combustion process, temperature fields and concentration species in the work section of industrial cyclone-calciner furnace. The RANSapproach with different turbulence models for modeling was used. Simulation results obtained with the model are compared with industrial furnace data. The results obtained with the computer model have important effects on the predicted temperature distribution in the furnace as well as on other significant design parameters for future theoretical and industrial research.
URI: https://ena.lpnu.ua/handle/ntb/42061
Copyright owner: © Національний університет „Львівська політехніка“, 2017
© Havryliv R., Maystruk V., 2017
References (Ukraine): [1] Havryliv R., Maystruk V. and Biliak V.: EEJET, 2015, 75, 14.
[2] Artyukhov A. and Sklabinsriy V.: Chem. Chem. Technol., 2015, 9, 175.
[3] Sklabinsriy V., Liaposhchenko O., Logvyn A. and Al-Rammahi M.: Chem. Chem. Technol., 2014, 8, 479.
[4] Magnussen B. and Hjertager B.: 16th Symp. on Combustion. The Combustion Institute, USA, Pittsburgh 1976, 719.
[5] Peters N.: Turbulent Combustion. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge 2014.
[6] Birkhoff G.: Hydrodynamics: A study in Logic, Fact, and Similitude, 2nd edn. Princeton University Press, Princeton 1960.
[7] Batchelor G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge 1967.
[8] Salvi R. (Ed.): Navier-Stokes Equations. Theory and Numerical Methods. Marcel Dekker, Inc., New York 2002.
[9] Spalart P. and Allmaras S.: Conference Reno, USA, Nevada 1999, 92.
[10] Wilcox D.: Turbulence Modeling for CFD, 1st edn. DCW Industries, Inc., La Canada CA 1993.
[11] Furbo E.:MA thesis. Uppsala University, 2010.
[12] Pope S.: Turbulent Flows. Cambridge University Press, Cambridge 2000.
[13] Schmitt F.: Comptes Rendus Mecanique, Elsevier Masson, 2007, 335, 617.
[14] Orszag S., Yakhot V., Flannery W. et al.: Int. Conf. on Near- Wall Turbulent Flows, USA, Tempe 1993.
[15]Menter F.: AIAA J., 1994, 32, 1299.
[16] Launder B. and Spalding D.: Lectures in Mathematical Models of Turbulence. Academic Press, London 1972.
References (International): [1] Havryliv R., Maystruk V. and Biliak V., EEJET, 2015, 75, 14.
[2] Artyukhov A. and Sklabinsriy V., Chem. Chem. Technol., 2015, 9, 175.
[3] Sklabinsriy V., Liaposhchenko O., Logvyn A. and Al-Rammahi M., Chem. Chem. Technol., 2014, 8, 479.
[4] Magnussen B. and Hjertager B., 16th Symp. on Combustion. The Combustion Institute, USA, Pittsburgh 1976, 719.
[5] Peters N., Turbulent Combustion. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge 2014.
[6] Birkhoff G., Hydrodynamics: A study in Logic, Fact, and Similitude, 2nd edn. Princeton University Press, Princeton 1960.
[7] Batchelor G., An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge 1967.
[8] Salvi R. (Ed.): Navier-Stokes Equations. Theory and Numerical Methods. Marcel Dekker, Inc., New York 2002.
[9] Spalart P. and Allmaras S., Conference Reno, USA, Nevada 1999, 92.
[10] Wilcox D., Turbulence Modeling for CFD, 1st edn. DCW Industries, Inc., La Canada CA 1993.
[11] Furbo E.:MA thesis. Uppsala University, 2010.
[12] Pope S., Turbulent Flows. Cambridge University Press, Cambridge 2000.
[13] Schmitt F., Comptes Rendus Mecanique, Elsevier Masson, 2007, 335, 617.
[14] Orszag S., Yakhot V., Flannery W. et al., Int. Conf. on Near- Wall Turbulent Flows, USA, Tempe 1993.
[15]Menter F., AIAA J., 1994, 32, 1299.
[16] Launder B. and Spalding D., Lectures in Mathematical Models of Turbulence. Academic Press, London 1972.
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2017. – Vol. 11, No. 1

Files in This Item:
File Description SizeFormat 
2017v11n1_Havryliv_R-Development_of_combustion_71-80.pdf5.32 MBAdobe PDFView/Open
2017v11n1_Havryliv_R-Development_of_combustion_71-80__COVER.png487.92 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.