Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/41466
Full metadata record
DC FieldValueLanguage
dc.contributor.authorВаврух, М.
dc.contributor.authorСмеречинський, С.
dc.contributor.authorДзіковський, Д.
dc.contributor.authorVavrukh, M.
dc.contributor.authorSmerechynskyi, S.
dc.contributor.authorDzikovskyi, D.
dc.date.accessioned2018-06-05T14:12:25Z-
dc.date.available2018-06-05T14:12:25Z-
dc.date.created2017-06-15
dc.date.issued2017-06-15
dc.identifier.citationVavrukh M. The influence of the axial rotation on the degenerate dwarfs characteristics / M. Vavrukh, S. Smerechynskyi, D. Dzikovskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 107–115.
dc.identifier.issn2312-9794
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/41466-
dc.description.abstractРозраховано змiну характеристик холодних вироджених карликiв пiд впливом осьо- вого обертання у межах три- та чотирипараметричної моделей. Показано, що вiд- носне збiльшення маси карлика становить приблизно 5%. Тому максимальна маса у стандартнiй моделi з парамагнiтною електронною пiдсистемою досягає 1.52M⊙, а в моделi зi спiн-поляризованою електронною пiдсистемою 2.15M⊙. Знайдено за- лежнiсть форми карлика вiд параметрiв моделей (густини у центрi зорi, параметра хiмiчного складу, частоти обертання i ступеня поляризацiї).
dc.description.abstractThe influence of the axial rotation on degenerate dwarfs characteristics is calculated within the three- and four parametric model. It was shown that the relative increase of dwarf’s mass is about 5%. Therefore the maximal mass in standard model with paramagnetic electron subsystem reaches 1.52M⊙, and in the model with spin-polarized electron subsystem is 2.15M⊙. The dependence of the dwarf’s shape was found as a function of the model parameters (the density in the stellar center, the chemical composition parameter, the rotation frequency and the degree of polarization).
dc.format.extent107-115
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (4), 2017
dc.subjectвироджений карлик
dc.subjectгустина у центрі зорі
dc.subjectпараметр хімічного складу
dc.subjectчастота обертання
dc.subjectступінь поляризації
dc.subjectdegenerate dwarf
dc.subjectthe density in the stellar center
dc.subjectthe chemical composition parameter
dc.subjectthe rotation frequency
dc.subjectthe degree of polarization
dc.titleThe influence of the axial rotation on the degenerate dwarfs characteristics
dc.title.alternativeВплив осьового обертання на характеристики вироджених карликів
dc.typeArticle
dc.rights.holder© 2017 Lviv Polytechnic National University CMM IAPMM NASU
dc.contributor.affiliationЛьвiвський національний університет імені Івана Франка
dc.contributor.affiliationIvan Franko National University of Lviv
dc.format.pages9
dc.identifier.citationenVavrukh M. The influence of the axial rotation on the degenerate dwarfs characteristics / M. Vavrukh, S. Smerechynskyi, D. Dzikovskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 107–115.
dc.relation.references[1] AdamsW. S. The spectrum of the companion of Sirius. PASP. 27, 236 (1915).
dc.relation.references[2] FowlerR.H. On dense matter. MNRAS. 87, 114 (1926).
dc.relation.references[3] Chandrasekhar S. The maximum mass of ideal white dwarfs. Astrophys. Journ. 74, 81 (1931).
dc.relation.references[4] Chandrasekhar S. Stellar configurations with degenerate cores’ (second paper). MNRAS. 95, 676 (1935).
dc.relation.references[5] Salpeter E. Energy and pressure of a zero-temperature plasma. Astrophys. Journ. 134, 669 (1961).
dc.relation.references[6] Shapiro S. L. Teukolsky S.A. Black Holes, White Dwarfs and Neutron Stars. Cornell University, Ithaca, New York (1983).
dc.relation.references[7] HamadaT., Salpeter E. Models for zero-temperature stars. Europ. Astrophys. J. 133, 683 (1961).
dc.relation.references[8] ZeldovichYa.B., Novikov I.D. Relativistic astrophysics. Moscow, Nauka (1967).
dc.relation.references[9] VavrukhM.V., Smerechinskii S.V. A finite temperature Chandrasekhar model: determining the parameters and computing the characteristics of degenerate dwarfs. Astronomy Reports. 56, n. 5, 363 (2012).
dc.relation.references[10] VavrukhM.V., Smerechinskii S.V. Hot degenerate dwarfs in a two-phase model. Astronomy Reports. 57, n. 2, 913 (2013).
dc.relation.references[11] VavrukhM., TyshkoN., Smerechynskyj S. Interparticle interactions, general relativity effects, and critical parameter of white dwarfs. Mathematical Modeling And Computing. 1, n. 2, 264 (2014).
dc.relation.references[12] VavrukhM.V., DzikovskyiD.V., TyshkoN. L. Model of degenerate dwarf with spin-polarized electron system. Odessa Astronomical Publications. 28, n. 1, 82 (2015).
dc.relation.referencesen[1] AdamsW. S. The spectrum of the companion of Sirius. PASP. 27, 236 (1915).
dc.relation.referencesen[2] FowlerR.H. On dense matter. MNRAS. 87, 114 (1926).
dc.relation.referencesen[3] Chandrasekhar S. The maximum mass of ideal white dwarfs. Astrophys. Journ. 74, 81 (1931).
dc.relation.referencesen[4] Chandrasekhar S. Stellar configurations with degenerate cores’ (second paper). MNRAS. 95, 676 (1935).
dc.relation.referencesen[5] Salpeter E. Energy and pressure of a zero-temperature plasma. Astrophys. Journ. 134, 669 (1961).
dc.relation.referencesen[6] Shapiro S. L. Teukolsky S.A. Black Holes, White Dwarfs and Neutron Stars. Cornell University, Ithaca, New York (1983).
dc.relation.referencesen[7] HamadaT., Salpeter E. Models for zero-temperature stars. Europ. Astrophys. J. 133, 683 (1961).
dc.relation.referencesen[8] ZeldovichYa.B., Novikov I.D. Relativistic astrophysics. Moscow, Nauka (1967).
dc.relation.referencesen[9] VavrukhM.V., Smerechinskii S.V. A finite temperature Chandrasekhar model: determining the parameters and computing the characteristics of degenerate dwarfs. Astronomy Reports. 56, n. 5, 363 (2012).
dc.relation.referencesen[10] VavrukhM.V., Smerechinskii S.V. Hot degenerate dwarfs in a two-phase model. Astronomy Reports. 57, n. 2, 913 (2013).
dc.relation.referencesen[11] VavrukhM., TyshkoN., Smerechynskyj S. Interparticle interactions, general relativity effects, and critical parameter of white dwarfs. Mathematical Modeling And Computing. 1, n. 2, 264 (2014).
dc.relation.referencesen[12] VavrukhM.V., DzikovskyiD.V., TyshkoN. L. Model of degenerate dwarf with spin-polarized electron system. Odessa Astronomical Publications. 28, n. 1, 82 (2015).
dc.citation.volume4
dc.citation.issue1
dc.citation.spage107
dc.citation.epage115
dc.coverage.placenameLviv
dc.subject.udc524.31.084
dc.subject.udc524.384
dc.subject.udc524.352.3
Appears in Collections:Mathematical Modeling And Computing. – 2017. – Vol. 4, No. 1

Files in This Item:
File Description SizeFormat 
2017v4n1_Vavrukh_M-The_influence_of_the_axial_107-115.pdf1.05 MBAdobe PDFView/Open
2017v4n1_Vavrukh_M-The_influence_of_the_axial_107-115__COVER.png428.97 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.