Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/41164
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMyroniuk, Viktor-
dc.contributor.authorBilous, Andrii-
dc.date.accessioned2018-05-15T14:01:06Z-
dc.date.available2018-05-15T14:01:06Z-
dc.date.issued2016-
dc.identifier.citationMyroniuk V. Combining RapidEye satellite images and forest inventory data for assesment of forest biomass / Viktor Myroniuk, Andrii Bilous // Litteris et Artibus : proceedings of the 6th International youth science forum, November 24–26, 2016, Lviv, Ukraine / Lviv Polytechnic National University. – Lviv : Lviv Polytechnic Publishing House, 2016. – P. 488–489. – Bibliography: 7 titles.uk_UA
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/41164-
dc.description.abstractThe paper presents the results of estimation of growing stock volume and live biomass in forest stands using combination of forest inventory measurements, multispectral satellite images RapidEye and digital elevation model (DEM). In a context of classification of remote sensing data we considered two nonparametric methods – k-Nearest Neighbors (k-NN) and Random Forest (RF). We concluded that RF outperforms kNN method nevertheless both of them provide quite accurate estimation of mean value of growing volume in a range of ±5 m3·ha-1, different components of aboveground biomass - ±1–2 t·ha-1.uk_UA
dc.language.isoenuk_UA
dc.publisherLviv Polytechnic Publishing Houseuk_UA
dc.subjectforestuk_UA
dc.subjectbiomassuk_UA
dc.subjectRapidEyeuk_UA
dc.subjectk-NN imputationuk_UA
dc.subjectrandom forestuk_UA
dc.titleCombining RapidEye satellite images and forest inventory data for assesment of forest biomassuk_UA
dc.typeConference Abstractuk_UA
dc.contributor.affiliationNational University of Life and Environmental Sciences of Ukraineuk_UA
dc.coverage.countryUAuk_UA
dc.format.pages488-489-
dc.relation.referencesen[1] Bilous А. М. Biological productivity and ecosystem functions of softwood deciduous forests in the Ukrainian Polissya : The Manuscript : 06.03.02 , 06.03.03 / Bilous Andrii – Kyiv, 2016. – 423 p. [2] Breiman L. Random Forest / L. Breiman // Machine Learning. – 2001. – Vol. 45. – № 1. – P. 5–32. [3] Crookston N. L. yaImpute: An R Package for ¬kNN Imputation / N. L. Crookston, A. O. Finley // Journal of Statistical Software. – 2008. – Vol. 23. – Issue 10. – 1–16. [4] Imputing forest structure attributes from stand inventory and remote sensed data in Western Oregon, USA / A. T. Hudak, A. T. Haren, N. L. Crookston et al. // Forest Science. – 2014. – Vol. 60. – Issue. 2.– P. 253–269. [5] McRoberts R. E. Estimation forest attribute parameters for small areas using nearest neighbors techniques / R. E. McRoberts // Forest Ecology and Management. – 2012. – Vol. 272. – P. 3–12. [6] Tables and models of growth and productivity of forest of forming species of Northern Eurasia (standard and reference materials) – М.: 2006. – 803 p. [7] Tomppo E. Satellite image-based National Forest Inventory of Finland / E. Tompo // International Archives of Photogrammetry and Remote Sensing. – 1991. – Vol. 28: 1–7. – P. 419–424.uk_UA
dc.citation.conferenceLitteris et Artibus-
dc.coverage.placenameLvivuk_UA
Appears in Collections:Litteris et Artibus. – 2016 р.

Files in This Item:
File Description SizeFormat 
LEA-2016-488-489.pdf471.34 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.