Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/40662
Full metadata record
DC FieldValueLanguage
dc.contributor.authorДемчина, О. І.
dc.contributor.authorДемидова, Х. В.
dc.contributor.authorЄвчук, І. Ю.
dc.contributor.authorКоваль, З. М.
dc.contributor.authorDemchyna, O. I.
dc.contributor.authorDemydova, Kh. V.
dc.contributor.authorYevchuk, I. Yu.
dc.contributor.authorKoval’, Z. M.
dc.date.accessioned2018-04-13T11:28:26Z-
dc.date.available2018-04-13T11:28:26Z-
dc.date.created2017-03-28
dc.date.issued2017-03-28
dc.identifier.citationЗоль-гель синтез і дослідження властивостей сульфовмісних полімер-неорганічних мембран / О. І. Демчина, Х. В. Демидова, І. Ю. Євчук, З. М. Коваль // Вісник Національного університету «Львівська політехніка». Серія: Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2017. — № 868. — С. 325–332.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/40662-
dc.description.abstractСинтезовано гібридні полімер-неорганічні мембрани на основі акрилових мономерів (зокрема, сульфовмісних) та наночастинок кремнезему, сформованих у результаті in situ золь-гель перетворення тетраетоксисилану (ТЕОС). Досліджено сорбційні характе- ристики мембран з різним вмістом сульфогруп і зшиваного агента – N,N’- метиленбісакриламіду для початкової стадії процесу дифузії парів води та розраховано коефіцієнти дифузії парів води у мембранах. Одержані нанокомпозитні мембрани характеризуються однорідною структурою, що підтверджено методом скануючої електронної мікроскопії.
dc.description.abstractHybrid polymer-inorganic membranes based on acrylic monomers (including those with sulfogroups) and silica nanoparticles formed in in situ tetraethoxysilane (TEOS) sol-gel reaction were synthesized. Sorption characteristics of membranes with different content of coupling agent N,N’-methylenebisacrylamide composition have been investigated for the initial stage of the process. Diffusion coefficients of water vapour into membrane structure were calculated. The obtained nanocomposite membranes have homogeneous structure, what is confirmed by scanning electron microscopy.
dc.format.extent325-332
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofВісник Національного університету «Львівська політехніка». Серія: Хімія, технологія речовин та їх застосування, 868, 2017
dc.subjectоргано-неорганічна мембрана
dc.subjectпаливний елемент
dc.subjectпротонна провідність
dc.subjectзоль-гель технологія
dc.subjectтетраетоксисилан
dc.subjectorganic-inorganic membrane
dc.subjectfuel cell
dc.subjectionic conductivity
dc.subjectsol-gel technique
dc.subjecttetraethoxysilane
dc.titleЗоль-гель синтез і дослідження властивостей сульфовмісних полімер-неорганічних мембран
dc.title.alternativeSol-gel synthesis and characterization of sulphocontaining polymer-inorganic membranes
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2017
dc.rights.holder© Демчина О. І., Демидова Х. В., Євчук І. Ю., Коваль З. М., 2017
dc.contributor.affiliationВідділення фізико-хімії горючих копалин ІФОХВ ім. Л. М. Литвиненка НАН України
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.format.pages8
dc.identifier.citationenSol-gel synthesis and characterization of sulphocontaining polymer-inorganic membranes / O. I. Demchyna, Kh. V. Demydova, I. Yu. Yevchuk, Z. M. Koval’, Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2017. — No 868. — P. 325–332.
dc.relation.references1. Волков В. В., Мчедлишвили Б. В., Ролдугин В. И. и др. Мембраны и нанотехнологии // Российские нанотехнологии. – 2008. – Т. 3, № 11–12. – С. 67–99.
dc.relation.references2. Jones D. J., Roziere J. Inorganicorganic Composite Memebranes for PEM Fuel Cells // Handbook of Fuel Cells — Fundamentals, Technology and Applications / eds W. Vielstich, H. A.Gasteiger, A. Lamm. Vol. 3: Fuel Cell Technology and Applications. New York: John Wiley and Sons Ltd. – 2003. – Р. 447–455.
dc.relation.references3. Фоменков А. І., Пінус І. Ю., Перегудов А. С. та ін. Протонная проводимость полиариленэфиркетонов с разной степенью сульфирования и ее повышение введеним нанодисперсного кислого фосфата циркония // Высокомол. соед. Сер. Б. – 2007. – Т. 49, №7. – С. 1299–1305.
dc.relation.references4. Thomassin J. M., Koller J., Caldarella G et al. Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. // J. Membr. Sci. – 2007. – Vol. 303, Iss. 1–2. – Р. 252.
dc.relation.references5. Воропаева Е. Ю., Стенина И. А., Ярославцев А. Б. Транспортные свойства мембран МФ-4СК, модифицированных гидратированным оксидом кремния // Ж. неорган. химии. – 2008. – Т. 53, № 10. – С. 1637–1642.
dc.relation.references6. Kato M., Katayama S., Sakamoto W. et al. Synthesis of organosiloxane-based inorganic/organic hybrid membranes with chemically bound phosphonic acid for proton-conductors // Electrochim. Acta. – 2007. – Vol. 52, Iss. 19. – Р. 5924–5931.
dc.relation.references7. Tamaki R., Chujo Y. Synthesis of poly(vinyl alcohol) silica-gel polymer hybrids by in-situ hydrolysis method // Appl. Organometal. Chem. – 1998. – 12 (10–11). – Р. 755–762.
dc.relation.references8. Tamaki R., Samura K., Chujo Y. Synthesis of polystyrene and silica-gel polymer hybrids via pi-pi interactions // Chem. Commun. – 1998. – 10. – Р. 1131–1132.
dc.relation.references9. Xi J, Wu Z, Qiu X. et al. Nafion/SiO2 hybrid membrane for vanadium redox flow battery // Journal of Power Sources. – 2007. – 166:531–6. 1
dc.relation.references10. Wu D, Xu T, Wu L, Wu Y. Hybrid acid-base polymer membranes prepared for application in fuel cells // Journal of Power Sources. – 2009. – 186:286-92.
dc.relation.references11. Kim D.S., Liu B., Guiver M.D. Influence of silica content in sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) hybrid membranes on properties for fuel cell application // Polymer. –2006. – Vol. 47. – Р. 7871–7880.
dc.relation.references12. Мамуня Є. П., Юрженко М. В., Лебедєв Є. В. та ін. Електроактивні полімерні матеріали. – К., 2013. – 397 c.
dc.relation.referencesen1. Volkov V. V., Mchedlishvili B. V., Rolduhin V. I. and other Membrany i nanotekhnolohii, Rossiiskie nanotekhnolohii, 2008, V. 3, No 11–12, P. 67–99.
dc.relation.referencesen2. Jones D. J., Roziere J. Inorganicorganic Composite Memebranes for PEM Fuel Cells, Handbook of Fuel Cells - Fundamentals, Technology and Applications, eds W. Vielstich, H. A.Gasteiger, A. Lamm. Vol. 3: Fuel Cell Technology and Applications. New York: John Wiley and Sons Ltd, 2003, R. 447–455.
dc.relation.referencesen3. Fomenkov A. I., Pinus I. Yu., Perehudov A. S. and other Protonnaia provodymost polyarylenefyrketonov s raznoi stepeniu sulfyrovanyia y ee povyshenye vvedenym nanodyspersnoho kysloho fosfata tsyrkonyia, Vysokomol. soed. Ser. B, 2007, V. 49, No 7, P. 1299–1305.
dc.relation.referencesen4. Thomassin J. M., Koller J., Caldarella G et al. Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications., J. Membr. Sci, 2007, Vol. 303, Iss. 1–2, R. 252.
dc.relation.referencesen5. Voropaeva E. Iu., Stenina I. A., Iaroslavtsev A. B. Transportnye svoistva membran MF-4SK, modifitsirovannykh hidratirovannym oksidom kremniia, Zh. neorhan. khimii, 2008, V. 53, No 10, P. 1637–1642.
dc.relation.referencesen6. Kato M., Katayama S., Sakamoto W. et al. Synthesis of organosiloxane-based inorganic/organic hybrid membranes with chemically bound phosphonic acid for proton-conductors, Electrochim. Acta, 2007, Vol. 52, Iss. 19, R. 5924–5931.
dc.relation.referencesen7. Tamaki R., Chujo Y. Synthesis of poly(vinyl alcohol) silica-gel polymer hybrids by in-situ hydrolysis method, Appl. Organometal. Chem, 1998, 12 (10–11), R. 755–762.
dc.relation.referencesen8. Tamaki R., Samura K., Chujo Y. Synthesis of polystyrene and silica-gel polymer hybrids via pi-pi interactions, Chem. Commun, 1998, 10, R. 1131–1132.
dc.relation.referencesen9. Xi J, Wu Z, Qiu X. et al. Nafion/SiO2 hybrid membrane for vanadium redox flow battery, Journal of Power Sources, 2007, 166:531–6. 1
dc.relation.referencesen10. Wu D, Xu T, Wu L, Wu Y. Hybrid acid-base polymer membranes prepared for application in fuel cells, Journal of Power Sources, 2009, 186:286-92.
dc.relation.referencesen11. Kim D.S., Liu B., Guiver M.D. Influence of silica content in sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) hybrid membranes on properties for fuel cell application, Polymer. –2006, Vol. 47, R. 7871–7880.
dc.relation.referencesen12. Mamunia Ye. P., Yurzhenko M. V., Lebediev Ye. V. and other Elektroaktyvni polimerni materialy, K., 2013, 397 c.
dc.citation.journalTitleВісник Національного університету «Львівська політехніка». Серія: Хімія, технологія речовин та їх застосування
dc.citation.issue868
dc.citation.spage325
dc.citation.epage332
dc.coverage.placenameЛьвів
dc.subject.udc678.84
dc.subject.udc544.022.822
Appears in Collections:Хімія, технологія речовин та їх застосування. – 2017. – № 868

Files in This Item:
File Description SizeFormat 
2017n868_Demchyna_O_I-Sol_gel_synthesis_and_325-332.pdf1.07 MBAdobe PDFView/Open
2017n868_Demchyna_O_I-Sol_gel_synthesis_and_325-332__COVER.png419.7 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.