DC Field | Value | Language |
dc.contributor.author | Shpyrka, Iryna | |
dc.contributor.author | Nebesnyi, Roman | |
dc.contributor.author | Sydorchuk, Volodymyr | |
dc.contributor.author | Khalameida, Svitlana | |
dc.contributor.author | Ivasiv, Volodymyr | |
dc.contributor.author | Zavalii, Kateryna | |
dc.coverage.temporal | 23–25 листопада 2017 року | |
dc.coverage.temporal | 23–25 November, 2017 | |
dc.date.accessioned | 2018-04-12T13:06:21Z | - |
dc.date.available | 2018-04-12T13:06:21Z | - |
dc.date.created | 2017-12-23 | |
dc.date.issued | 2017-12-23 | |
dc.identifier.citation | Catalysts of aldol condensation of acetic acid with formaldehyde / Iryna Shpyrka, Roman Nebesnyi, Volodymyr Sydorchuk, Svitlana Khalameida, Volodymyr Ivasiv, Kateryna Zavalii // Litteris et Artibus : proceedings, 23–25 November, 2017. — Lviv : Lviv Polytechnic Publishing House, 2017. — P. 76–77. — (6th International academic conference «Chemistry & chemical technology 2017» (CCT-2017)). | |
dc.identifier.isbn | 978-966-941-108-2 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/40478 | - |
dc.description.abstract | It had been demonstrated that mechanochemical
and hydrothermal treatment of support allows increasing
activity and selectivity of the catalyst in the studied process.
Hydrothermal treatment (HTT) of silica increases mechanical
strength of silica gel granules subjected to hydrothermal
treatment, also reduction of coke formation takes place, as well
as prolongation of the catalysts life. Similarly, the same
approaches allow to optimize the pore structure of titanium
phosphates. | |
dc.format.extent | 76-77 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Polytechnic Publishing House | |
dc.relation.ispartof | Litteris et Artibus : матеріали, 2017 | |
dc.relation.ispartof | Litteris et Artibus : proceedings, 2017 | |
dc.subject | acrylic acid | |
dc.subject | aldol condensation | |
dc.subject | mechanochemical treatment | |
dc.subject | hydrothermal treatment | |
dc.subject | porous structure | |
dc.title | Catalysts of aldol condensation of acetic acid with formaldehyde | |
dc.type | Conference Abstract | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2017 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Institute for Sorption and Problems of Endoecology of NAS of Ukraine | |
dc.format.pages | 2 | |
dc.identifier.citationen | Catalysts of aldol condensation of acetic acid with formaldehyde / Iryna Shpyrka, Roman Nebesnyi, Volodymyr Sydorchuk, Svitlana Khalameida, Volodymyr Ivasiv, Kateryna Zavalii // Litteris et Artibus : proceedings, 23–25 November, 2017. — Lviv : Lviv Polytechnic Publishing House, 2017. — P. 76–77. — (6th International academic conference «Chemistry & chemical technology 2017» (CCT-2017)). | |
dc.relation.references | [1] H. Danner, M. Ürmös, M. Gartner, R. Braun, “Biotechnological Production of Acrylic Acid from Biomass”, Applied Biochemistry and Biotechnology, vol. 70, pp. 887-894, 2008,doi:10.1007/BF02920199. | |
dc.relation.references | [2] Cuncun Zuo, Yaping Li, Chunshan Li, Shasha Cao, Haoyu Yao, Suojiang Zhang, “Thermodynamics and separation process for quaternary acrylic systems”, AlChE J., 62, 228–240, 2015, doi:10.1002/aic.15015. | |
dc.relation.references | [3] Valentina T.Shashkova, Irina A.Matveeva, Nikolay N.Glagolev, Tatyana S.Zarkhina, Anastasiya V.Cherkasova, Svetlana L.Kotova, Peter S.Timashev, Anna B.Solovieva, “Synthesis of polylactide acrylate derivatives for the preparation of 3D structures by photo-curing”. Mendeleev Communications, , vol. 26, pp. 418-420, 2016doi: 10.1016/j.mencom.2016.09.018. | |
dc.relation.references | [4] Killian Flégeau, Richard Pace, HélèneGautier, Gildas Rethore, Jerome Guicheux, Catherine Le Visage, PierreWeiss, “Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine”, Advances in Colloid and Interface Science, 2017,doi: 10.1016/j.cis.2017.07.012. | |
dc.relation.references | [5] X. Li, Y. Zhang, “Highly Efficient Process for the Conversion of Glycerol to Acrylic Acid via Gas Phase Catalytic Oxidation of an Allyl Alcohol Intermediate”, ACS Catalysis, vol. 6, pp. 143-150, 2016, doi: 10.1021/acscatal.5b01843. | |
dc.relation.references | [6] Zhyznevs'kyy V.M., Nebesnyy R.V., Ivasiv V.V., S. V. Shybanov. “Obtaining of acrylic monomers by gas-phased catalytic condensation of carbonyl compounds in gas phase”, Reports of NAS Ukraine, vol. 10, pp. 114–118, 2010. | |
dc.relation.references | [7] Patent 0343319 US, Process for preparing acrylic acid with high space-time ield / M. Goebel // BASF SE., filing date: 18.05.2013; publication date: 08.04.2014. | |
dc.relation.references | [8] R.V. Nebesnyi, V.V. Ivasiv, V.M. Zhyznevskyy, S.V. Shybanov, S.V. Maykova, “Condensation of acetic acid with formaldehyde to acrylic acid over B-P-Mo-Cs-Ox catalysts in the gas phase”, Visnyk NU ”LP” “Chemistry, technology of substances and their applications”, no 667, pp. 196-199, 2010. | |
dc.relation.references | [9] R. Nebesnyi, V. Ivasiv, Y. Dmytruk, N. Lapychak, “Acrylic acid obtaining by acetic acid catalytic condensation with formaldehyde”, Eastern- European Journal of Enterprise Technologies, Vol. 6, no 6(66), pp. 40-42, 2013. | |
dc.relation.references | [10] V.V. Ivasiv, Z.G. Pikh, V.M. Zhyznevskyy, R.V. Nebesnyi, “Physical-chemical properties of surface of B2O3 – P2O5 – МеOх/SiO2 catalysts and their influence on parameters of propionic acid aldol condensation with formaldehyde”, Reports of NASc of Ukraine, no. 11, pp. 126-130, 2011. | |
dc.relation.references | [11] E. Skwarek, S. Khalameida, W. Janusz, V. Sydorchuk, N. Konovalova, V. Zazhigalov, J. Skubiszewska- Zięba, R. Leboda Influence of mechanochemical activation on structure and some properties of mixed vanadium-molybdenum oxides. Journal of Thermal Analysis and Calorimetry, vol.106, no3, pp.881-894, 2011. | |
dc.relation.references | [12] J. Skubiszewska-Zieba, S. Khalameida, V. Sydorchuk. Comparison of surface properties of silica xero- and hydrogels hydrothermally modified using mechanochemical, microwave and classical methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 504, pp. 139-153, 2016. | |
dc.relation.referencesen | [1] H. Danner, M. Ürmös, M. Gartner, R. Braun, "Biotechnological Production of Acrylic Acid from Biomass", Applied Biochemistry and Biotechnology, vol. 70, pp. 887-894, 2008,doi:10.1007/BF02920199. | |
dc.relation.referencesen | [2] Cuncun Zuo, Yaping Li, Chunshan Li, Shasha Cao, Haoyu Yao, Suojiang Zhang, "Thermodynamics and separation process for quaternary acrylic systems", AlChE J., 62, 228–240, 2015, doi:10.1002/aic.15015. | |
dc.relation.referencesen | [3] Valentina T.Shashkova, Irina A.Matveeva, Nikolay N.Glagolev, Tatyana S.Zarkhina, Anastasiya V.Cherkasova, Svetlana L.Kotova, Peter S.Timashev, Anna B.Solovieva, "Synthesis of polylactide acrylate derivatives for the preparation of 3D structures by photo-curing". Mendeleev Communications, , vol. 26, pp. 418-420, 2016doi: 10.1016/j.mencom.2016.09.018. | |
dc.relation.referencesen | [4] Killian Flégeau, Richard Pace, HélèneGautier, Gildas Rethore, Jerome Guicheux, Catherine Le Visage, PierreWeiss, "Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine", Advances in Colloid and Interface Science, 2017,doi: 10.1016/j.cis.2017.07.012. | |
dc.relation.referencesen | [5] X. Li, Y. Zhang, "Highly Efficient Process for the Conversion of Glycerol to Acrylic Acid via Gas Phase Catalytic Oxidation of an Allyl Alcohol Intermediate", ACS Catalysis, vol. 6, pp. 143-150, 2016, doi: 10.1021/acscatal.5b01843. | |
dc.relation.referencesen | [6] Zhyznevs'kyy V.M., Nebesnyy R.V., Ivasiv V.V., S. V. Shybanov. "Obtaining of acrylic monomers by gas-phased catalytic condensation of carbonyl compounds in gas phase", Reports of NAS Ukraine, vol. 10, pp. 114–118, 2010. | |
dc.relation.referencesen | [7] Patent 0343319 US, Process for preparing acrylic acid with high space-time ield, M. Goebel, BASF SE., filing date: 18.05.2013; publication date: 08.04.2014. | |
dc.relation.referencesen | [8] R.V. Nebesnyi, V.V. Ivasiv, V.M. Zhyznevskyy, S.V. Shybanov, S.V. Maykova, "Condensation of acetic acid with formaldehyde to acrylic acid over B-P-Mo-Cs-Ox catalysts in the gas phase", Visnyk NU "LP" "Chemistry, technology of substances and their applications", no 667, pp. 196-199, 2010. | |
dc.relation.referencesen | [9] R. Nebesnyi, V. Ivasiv, Y. Dmytruk, N. Lapychak, "Acrylic acid obtaining by acetic acid catalytic condensation with formaldehyde", Eastern- European Journal of Enterprise Technologies, Vol. 6, no 6(66), pp. 40-42, 2013. | |
dc.relation.referencesen | [10] V.V. Ivasiv, Z.G. Pikh, V.M. Zhyznevskyy, R.V. Nebesnyi, "Physical-chemical properties of surface of B2O3 – P2O5 – MeOkh/SiO2 catalysts and their influence on parameters of propionic acid aldol condensation with formaldehyde", Reports of NASc of Ukraine, no. 11, pp. 126-130, 2011. | |
dc.relation.referencesen | [11] E. Skwarek, S. Khalameida, W. Janusz, V. Sydorchuk, N. Konovalova, V. Zazhigalov, J. Skubiszewska- Zięba, R. Leboda Influence of mechanochemical activation on structure and some properties of mixed vanadium-molybdenum oxides. Journal of Thermal Analysis and Calorimetry, vol.106, no3, pp.881-894, 2011. | |
dc.relation.referencesen | [12] J. Skubiszewska-Zieba, S. Khalameida, V. Sydorchuk. Comparison of surface properties of silica xero- and hydrogels hydrothermally modified using mechanochemical, microwave and classical methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 504, pp. 139-153, 2016. | |
dc.citation.conference | 7th International youth science forum «Litteris et Artibus» | |
dc.citation.journalTitle | Litteris et Artibus : матеріали | |
dc.citation.spage | 76 | |
dc.citation.epage | 77 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Litteris et Artibus. – 2017 р.
|