Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/39460
Title: A method of construction of automated basic ontology
Authors: Lytvyn, Vasyl
Vysotska, Victoria
Wojcik, Waldemar
Dosyn, Dmytro
Affiliation: Lviv Polytechnic National University
Institute of Electronics and Information Technology, Lublin University of Technology
Systems Analysis Laboratory, Karpenko Physico-Mechanical Institute of the NAS of Ukraine
Bibliographic description (Ukraine): A method of construction of automated basic ontology / Vasyl Lytvyn, Victoria Vysotska, Waldemar Wojcik, Dmytro Dosyn // Computational linguistics andintelligent systems (COLINS 2017) : proceedings of the 1st International conference, Kharkiv, Ukraine, 21 April 2017 / National Technical University «KhPI», Lviv Polytechnic National University. – Kharkiv, 2017. – P. 75–83. – Bibliography: 17 titles.
Conference/Event: Computational linguistics andintelligent systems (COLINS 2017)
Issue Date: 2017
Publisher: National Technical University «KhPI»
Country (code): UA
Place of the edition/event: Kharkiv
Keywords: computer system
ontology
knowledge base
database
text document
machine learning
intelligent agent
utility
semantic
logic of predicate
Number of pages: 75-83
Abstract: The paper describes an approach to development of a computer system that automatically constructs an ontology base. Basic modules of the system and its operation are described, as well as the choice of software tools for implementation. Application of the proposed system allows to fill the domain ontology in an automatic mode. Therefore, this paper introduces an approach to development of an automated basic ontology composition. An architecture of synthesis of the ontology system is created using CROCUS (Cognition Relations or Concepts Using Semantics) software model. The main system modules and their functions are described. A decision of SDK for system realization is justified. Application of the proposed system can fill an ontology of subject area automatically.
URI: https://ena.lpnu.ua/handle/ntb/39460
References (International): 1. Ourania Hatzi, Dimitris Vrakas, Nick Bassiliades, (2010). Dimosthenis Anagnostopoulos, and Ioannis Vlahavas. The PORSCE II Framework: Using AI Planning for Automated Semantic Web Service Composition the Knowledge Engineering Review, Cambridge University Press, Vol. 02:3, 1–24 p. (In English) 2. Link Grammar – Carnegie Mellon University, available at: http://bobo.link.cs.cmu.edu/link. 3. Qiu Ji, Peter Haase, and Guilin Qi (2008). Combination of Similarity Measures in Ontology Matching using the OWA Operator, In Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge- Base Systems. 4. Lytvyn V. (2013). Design of intelligent decision support systems using ontological approach, An international quarterly journal on economics in technology, new technologies and modelling processes, Krakiv-Lviv, Vol. II, No 1, 31 – 38 (In English). 5. Gruber T. A. (1993). Translation approach to portable ontologies. Knowledge Acquisition, № 5 (2):199–220. 6. Guarino N. (1995). Formal Ontology, Conceptual Analysis and Knowledge Representation. International Journal of Human-Computer Studies, 43(5-6):625–640. 7. Sowa J. (1992). Conceptual Graphs as a universal knowledge representation. In: Semantic Networks in Artificial Intelligence, Spec. Issue of An International Journal Computers & Mathematics with Applications. (Ed. F. Lehmann), № 2–5:75–95. 8. Montes-y-Gómez M. (2000). Comparison of Conceptual Graphs [Електронний ресурс]. Lecture Notes in Artificial Intelligence, Vol. 1793. – Springer-Verlag. Режим доступу до журналу: http://ccc.inaoep.mx/~mmontesg/publicaciones/ 2000/ComparisonCG. 9. Muller H.M., Kenny E.E., Sternberg P.W. (2004). ―An Ontology-Based Information Retrieval and Extraction System for Biological Literature‖. PLoS Biol. 2(11):e309. doi:10.1371/journal.pbio.0020309. 10. Knappe R., Bulskov H., Andreasen T. (2004) Perspectives on Ontology-based Querying // International Journal of Intelligent Systems. – http://akira.ruc.dk/~knappe/publications/ ijis2004.pdf. 11. Jacso, Peter. (2010). ―The impact of Eugene Garfield through the prizm of Web of Science,‖. Annals of Library and Information Studies, Vol. 57, p. 222. 12. Christoph Meinel Serge Linckels (2007). Semantic interpretation of natural language user input to improve search in multimedia knowledge base, Information Technologies, 49(1):40–48. 13. Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias (2005) A String Metric For Ontology Alignment, Proc. of the 4rd Int. Semantic Web Conf. (ISWC), vol 3729 of LNCS, p. 624–637, Berlin. Springer. 14. Lytvyn V., DosynD., Smolarz A. (2013). An ontology based intelligent diagnostic systems of steel corrosion protection, Elektronika, Lodzj. – No. 8. – 2-13. – Pp. 22-24 (In English). 15. Lytvyn V. (2011), The similarity metric of scientific papers summaries on the basis of adaptive ontologies , Proceedings of VIIth International Conference on Perspective Technologies and Methods in MEMS Design, Polyana, Ukraine, pp. 162. (In English) 16. Lytvyn V., Pukach P., Bobyk І., Vysotska V. (2016). The method of formation of the status of personality understanding based on the content analysis, Eastern-European Journal of Enterprise Technologies, no5/2(83), 4–12. 17. Lytvyn V., Vysotska V., Veres O., Rishnyak I., and Rishnyak H. (2017). Classification Methods of Text Documents Using Ontology Based Approach, Advances in Intelligent Systems and Computing 512, Springer International Publishing AG: 229-240.
Content type: Conference Abstract
Appears in Collections:Computational linguistics and intelligent systems. – 2017 р.

Files in This Item:
File Description SizeFormat 
010-075-083.pdf435.55 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.