Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/34577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorРудий, Р.-
dc.date.accessioned2016-12-08T09:18:00Z-
dc.date.available2016-12-08T09:18:00Z-
dc.date.issued2016-
dc.identifier.citationРудий Р. Застосування штучних нейронних мереж для класифікації ділянок поверхні з певним рельєфом / Р. Рудий // Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник / Міністерство освіти і науки України, Національний університет "Львівська політехніка" ; відповідальний редактор К. Р. Третяк. – Львів : Видавництво Львівської політехніки, 2016. – Випуск 83. – С. 124–132. – Бібліографія: с. 129–130.uk_UA
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/34577-
dc.description.abstractМета досліджень. Головною метою досліджень є аналіз рельєфу різних поверхонь, а саме: виділення на загальній поверхні окремих ділянок певної форми, наприклад, схилів, що орієнтовані у заданому напрямку. Мета роботи - використання штучних нейронних мереж (ШНМ) для розв’язку задачі класифікації, яка полягає у створенні бінарного класифікатора та дослідження точності його роботи. Методика. Дослідження виконувались на ділянці земної поверхні. Для неї була створена цифрова модель, яка подана грідфайлом, тобто висотами у перехрестях регулярної сітки квадратів, або матрицею 21x17 висот у перехрестях. З цієї матриці були створені образи, тобто вікна окремих ділянок поверхні розміром 3x3 перехрестя. Кожен образ подавався як вектор ознак, якими були нахили з центральної точки вікна на інших восьми крайніх точках. Отже, рельєф взятої поверхні був поданий 77-ма образами. Наступним кроком було створення бінарного класифікатора. Він ділить об’єкти (ділянки поверхні) з нахилом із заходу на схід в одну групу, а усі інші - в другу. Для цього використовувався Модуль опрацювання даних на основі алгоритмів штучних нейронних мереж у пакеті прикладних програм МАТЛАБ. Була створена ШНМ, проведено її навчання, виконано моделювання та тестування, були вибрані вхідні, скриті та вихідні нейронні шари. На основі ШНМ був виконаний процес класифікації. Вхідні дані були представлені матрицею образів розміром 8x77. Матриця завдань (target) була розмірністю 2x77. Її елементи мали значення 0 або 1, залежно від того, до якого класу належить ця ділянка. Третя матриця (test) мала розмірність 8x8. Класифікація та її оцінка точності виконувались двома способами з використанням графічного редактора nntool і nprtool. Результати. Робота створеного класифікатора перевірялась за допомогою тестових образів. У дослідженнях тест був матрицею, що складалась з восьми стовпців. Два стовпці цієї матриці були образами схилів, орієнтованих із заходу на схід, один - близький до них, а решта - образами поверхонь довільної форми. Оцінка роботи класифікатора виконувалась за допомогою матриці неточностей (confusion matrix). У нашому випадку загальна кількість правильно класифікованих зразків становила близько 99 %. Наукова новизна і практична цінність. Проведені експериментальні дослідження з виділення ділянок поверхні зі схилами певної орієнтації та аналіз результатів дають змогу використовувати їх під час дослідженнь рельєфу земної поверхні та поверхонь інших об’єктів, наприклад, під час вивчення мікрорельєфу механічних деталей, різноманітних біологічних об’єктів рельєфу земної поверхні, який значною мірою визначає родючість сільськогосподарських угідь, впливає на екологічно небезпечні явища, а саме: повені, селі, зсуви та снігові лавини. Отже, розробка та вдосконалення об’єктивних методів класифікації ділянок поверхні є актуальним завданням. Цель исследований. Главной целью исследований является анализ рельефа различных поверхностей, а именно выделение на обшей поверхности отдельных участков определенной формы, например, склонов, ориентированных в заданном направлении. Целью статьи является использование исскуственных нейронных сетей (ИНС) для решения задачи классификации, заключается в создании бинарного классификатора и исследования точности его работы. Методика. Исследования выполнялись на участке земной поверхности. Для нее была создана цифровая модель, представленная гридфайлом, то есть высотами в перекрестках регулярной сетки квадратов, или матрицей 21x17 высот в этих перекрестках. С этой матрицы были созданы образы, то есть окна отдельных участков поверхности размером 3x3 перекрестий. Каждый образ подавался как вектор признаков, которыми были наклоны из центральной точки окна на остальных 8 крайних точках. Таким образом рельеф взятой поверхности был представлен 77-ю образами. Следующим шагом было создание бинарного классификатора. Он делит объекты (участки поверхности) с наклоном с запада на восток в одну группу, а все остальные - в другую. Для этого использовался Модуль обработки данных на основании алгоритмов исскуственных нейронных сетей пакета прикладных программ MATLAB. Была создана ИНС, проведено ее обучение, выполнено моделирование и тестирование. Для этого были выбраны входные, скрытые и выходные нейронные слои. На основе ИНС был выполнен процесс классификации. Входные данные были представлены матрицей образов размером 8x77. Матрица задач (target) была размерностью 2x77. Ее элементы имели значения 0 или 1, в зависимости от того, к какому классу относится данный участок. Третья матрица (test) имела размерность 8x8. Классификация и ее оценка точности выполнялись двумя путями с использованием графического редактора nntool и nprtool. Результаты. Работа созданного классификатора проверялась с помощью тестовых образов. В исследованиях тест был матрицей, состоящей из восьми столбцов. Два столбца этой матрицы были образами склонов, ориентированных с запада на восток, один - близкий к ним, а остальные - образами поверхностей произвольной формы. Оценка работы классификатора выполнялась с помощью матрицы неточностей (confusion matrix). В нашем случае общее количество правильно классифицированных образцов составляет около 99 процентов. Научная новизна и практическая ценность. Проведенные экспериментальные исследования по выделению участков поверхности с уклонами определенной ориентации и анализ результатов дают основания для их использования при исследованиях рельефа земной поверхности и поверхностей других объектов, например, при изучении микрорельефа механических деталей, различных биологических объектов и, конечно, рельефа земной поверхности, который в значительной степени определяет плодородие сельскохозяйственных угодий, влияет на экологически опасные явления, а именно: наводнения, сели, оползни и снежные лавины. Следовательно, разработка и совершенствование объективных методов классификации участков поверхности является актуальной задачей. The purpose of research. The main purpose of research is to analyze the relief of various surfaces. For example, to select on the surface the individual sections of a certain form, such as slopes that are oriented in a given direction. The main aim of the article is the use of artificial neural networks (ANN). To solve the problem of classification a binary classifier was created and its work and its accuracy was studied. Method. The research was carried out on the certain section of the earth's surface. The digital model, presented by greed file, was created. The heights at the intersections of grid squares, or matrix 21x17 were determined. From this matrix the images, that is separate windows of the surface areas measuring 3x3 intersection were made. Even image was made as a vector, that is the slopes from the central point of the window at the other 8 border points. The surface relief was presented by 77 images. The next step was to create a binary classifier. It divides objects (land surface) with the slopes from west to east into one group, and the rest - into the second. For this goal Module data processing algorithms based on artificial neural networks in MATLAB Software Package was used. It selected input, hidden and output neuron layers and conducted its study, performed the simulation and the testing. Classification process was carried on the base of ANN. Input data were presented by matrix size images 8x77. The matrix of targets had 2x77 dimensions. Its elements hada value of 0 or 1, depending on the class to wich the site belong. The third matrix (test) had 8x8 dimension. Classification and assessment of its accuracy was performed in two ways using the graphical editor nntool and nprtool. Results. The work of the created classifier was checked using the test images. The test, used in the studies was a matrix consisting of eight columns. Two columns of this matrix were images of slopes oriented from west to east - one close to them, and the rest - images of freeform surfaces. Assessment of the classifier was performed using confusion matrix. The total number of correctly classified samples was about 99 percent. Scientific novelty and practical value. Experimental research on the selection of surface areas with slopes of a certain orientation and analysis of the results give reasons for their use in different studies. It can be microrelief of the mechanical parts, various biological objects and, of course, the earth relief, which largely determines the fertility of agricultural lands, affects the ecological hazards such as: floods, mudflows, landslides and snow avalanche. So, development and improvement objective methods for classification surface areas is an urgent task.uk_UA
dc.language.isouauk_UA
dc.publisherВидавництво Львівської політехнікиuk_UA
dc.subjectкласифікаціяuk_UA
dc.subjectрельєфuk_UA
dc.subjectорієнтаціяuk_UA
dc.subjectточність класифікаціїuk_UA
dc.subjectштучні нейронні мережіuk_UA
dc.subjectклассификацияuk_UA
dc.subjectрельефuk_UA
dc.subjectориентацияuk_UA
dc.subjectточность классификацииuk_UA
dc.subjectисскуственные нейронные сетиuk_UA
dc.subjectclassificationuk_UA
dc.subjecttopographyuk_UA
dc.subjectorientationuk_UA
dc.subjectclassification accuracyuk_UA
dc.subjectartificial neural networksuk_UA
dc.titleЗастосування штучних нейронних мереж для класифікації ділянок поверхні з певним рельєфомuk_UA
dc.title.alternativeПрименение исскуственных нейронных сетей для классификации участков поверхности с определенным рельефомuk_UA
dc.title.alternativeApplication of artificial neural networks for classifying surface areas with a certain reliefuk_UA
dc.typeArticleuk_UA
Appears in Collections:Геодезія, картографія і аерофотознімання. – 2016. – Випуск 83

Files in This Item:
File Description SizeFormat 
14_124-132.pdf490.8 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.