Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/33749
Title: Basic concepts of dynamic recurrent neural networks development
Authors: Boyko, N.
Pobereyko, P.
Bibliographic description (Ukraine): Boyko N. Basic concepts of dynamic recurrent neural networks development / N. Boyko, P. Pobereyko // Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes. – Lublin ; Rzeszow, 2016. – Volum 5, number 2. – P. 63–68. – Bibliography: 20 titles.
Issue Date: 2016
Publisher: Commission of Motorization and Energetics in Agriculture
Keywords: recurrent neural network
dynamic system
learning algorithms
reservoir computing
unsteady dynamics
Abstract: In this work formulated relevance, set out an analytical review of existing approaches to the research recurrent neural networks (RNN) and defined precondition appearance a new direction in the field neuroinformatics – reservoir computing. Shows generalized classification neural network (NN) and briefly described main types dynamics and modes RNN. Described topology, structure and features of the model NN with different nonlinear functions and with possible areas of progress. Characterized and systematized well-known learning methods RNN and conducted their classification by categories. Determined the place RNN with unsteady dynamics of other classes RNN. Deals with the main parameters and terminology, which used to describe models RNN. Briefly described practical implementation recurrent neural networks in different areas natural sciences and humanities, and outlines and systematized main deficiencies and the advantages of using different RNN. The systematization of known recurrent neural networks and methods of their study is performed and on this basis the generalized classification of neural networks was proposed.
URI: https://ena.lpnu.ua/handle/ntb/33749
Content type: Article
Appears in Collections:Econtechmod. – 2016. – Vol. 5, No. 2

Files in This Item:
File Description SizeFormat 
10-63-68.pdf106.58 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.