https://oldena.lpnu.ua/handle/ntb/31671
Title: | Regional quasigeoid determination: an application to Arctic Gravity Project |
Other Titles: | Визначення регіонального квазігеоїда Арктичного гравітаційного проекту Определение регионального квазигеоида из Арктического гравитационного проекта |
Authors: | Marchenko, A. N. Dzhuman, B. B. |
Bibliographic description (Ukraine): | Marchenko A. N. Regional quasigeoid determination: an application to Arctic Gravity Project / A. N. Marchenko, B. B. Dzhuman // Геодинаміка. – 2015. – № 1 (18). – С. 7–17. – Bibliography: c. 15–16. |
Issue Date: | 2015 |
Publisher: | Видавництво Львівської політехніки |
Keywords: | gravity anomalies quasigeoid heights adjusted spherical harmonic analysis spherical cap harmonic analysis аномалії сили тяжіння висоти квазігеоїда adjusted spherical harmonic analysis spherical cap harmonic analysis аномалии силы тяжести высоты квазигеоида adjusted spherical harmonic analysis spherical cap harmonic analysis |
Abstract: | Purpose. Investigation to study quasigeoid computations based on the regional gravimetric data and different types of nonorthogonal basis functions was assessed to be important. When measurements from only restricted regions of the Earth surface are available, global spherical harmonics loose their orthogonality in a limited region, so the determination of the coefficients of the model, usually by using the least squares method, is numerically unstable. In spite of this fact, there is a specific solution for Laplace equation for the situation of a spherical cap when the boundary conditions are appropriate. Methods. Our solution uses the gravity anomalies in the Arctic area taken from the Arctic Gravity Project (AGP). The method applied on this data set is adjusted spherical harmonic analysis (ASHA). Computation of the quasigeoid heights was performed by the “Remove - Restore” procedure in three steps. On the first step the free air gravity anomalies of the EGM 2008 model up to degree/order 360 were substracted from the initial gravity anomalies of the AGP to get rid of the low frequency gravity field content. On the second step the approximation of the residual gravity anomalies was based on the ASHA method. The construction of the normal equations matrix may lead to the time consuming procedure. For this reason the discrete orthogonality property in longitude for the chosen basis system was taken into account and led to the significant decrease of the computational time of the residual coefficients akm, bkm. On the last step the residual quasigeoid heights (high frequency components of the gravity field) were computed via the residual harmonic coefficients akm, bkm and added to the global contribution of quasigeoid heights taken from the EGM2008 model up to degree/order 360 (low frequency components of the gravity field). Results. Hence the gravity field model was constructed and compared with AGP gravity anomalies. Also the obtained model of quasigeoid heights was compared with quasigeoid heights from 49 GNSS/leveling points. Scientific novelty and practical significance. In this paper the modification of ASHA method was developed, which makes it possible to significantly accelerate the process of computing the unknown coefficients in the construction of local gravitational fields. This allows to compute local gravitational fields of higher orders. It is well known that quasigeoid accuracy depends on the order of model. Мета. В роботі побудовано поле висот квазігеоїда на територію регіону Арктики. Коли в наявності є дані з певного регіону Землі, глобальні сферичні функції втрачають свою ортогональність на даному регіоні, і визначення коефіцієнтів моделі, яке зазвичай проводиться за способом найменших квадратів, стає чисельно нестабільним. Проте є спеціальне рішення рівняння Лапласа для сферичного сегменту. Метод. В якості вихідних даних прийнято поле аномалії сили ваги на даний регіон з Арктичного проекту. Побудова квазігеоїда здійснювалася за допомогою процедури “Видалення - Відновлення” в три етапи. На першому етапі від поля аномалій сили ваги з Арктичного проекту віднімалися модельні значення аномалій сили ваги, обчислені за моделлю EGM2008 до 360-го порядку. На другому етапі виконувалося моделювання отриманих залишків аномалій сили ваги за допомогою методу adjusted spherical harmonic analysis (ASHA). Даний метод передбачає редукцію вихідних даних на півсферу і їх моделювання за допомогою системи неортогональних функцій, які задовільняють рівнянню Лапласа. При цьому під час побудови матриці нормальних рівнянь було використано дискретну ортогональність базової системи функцій по довготі, що призвело до значного скорочення часу обчислень невідомих коефіцієнтів. На третьому етапі, використовуючи попередньо знайдені коефіцієнти моделі, було побудовано залишки висот квазігеоїда (короткохвильові ефекти поля), також побудовано внесок квазігеоїда із моделі EGM2008 (довгохвильові ефекти поля), і відновлено повне поле квазігеоїда. Результати. Побудовано модель регіонального гравітаційного поля і порівняно її з аномаліями сили тяжіння з AGP. Також отримано модель висот квазігеоїда, яку порівняно з висотами квазігеоїда, взятими З 49 точок GNSS/нівелювання. Наукова новизна і практична значущість. В даній роботі розроблено модифікацію методу ASHA, яка дає можливість значно пришвидшити процес знаходження невідомих коефіцієнтів при побудові локальних гравітаційних полів. Це дає можливість будувати локальні гравітаційні поля вищих порядків. Добре відомо, що точність квазігеоїда залежить від порядку моделі. Цель. В работе построено поле высот квазигеоида на территорию региона Арктики. Когда в наличии данные из определенного региона Земли, глобальные сферические функции теряют свою ортогональность на данном регионе, и определение коэффициентов модели, которое обычно проводится по способу наименьших квадратов, становится численно нестабильным. Однако есть специальное решение уравнения Лапласа для сферического сегмента. Метод. В качестве исходных данных принято поле аномалии силы тяжести на данный регион с Арктического проекта. Построение квазигеоида осуществлялась с помощью процедуры “ Удаление - Восстановление” в три этапа. На первом этапе от поля аномалий силы тяжести с Арктического проекта отнимались модельные значения аномалий силы тяжести, вычисленные по модели EGM2008 до 360-го порядка. На втором этапе выполнялось моделирование полученных остатков аномалий силы тяжести с помощью метода adjusted spherical harmonic analysis (ASHA). Данный метод предусматривает редукцию исходных данных на полусферу и их моделирование с помощью системы неортогональных функций, которые удовлетворяют уравнению Лапласа. При этом при построении матрицы нормальных уравнений было использовано дискретную ортогональность базовой системы функций по долготе, что привело к значительному сокращению времени вычислений неизвестных коэффициентов. На третьем этапе, используя предварительно найдены коэффициенты модели, было построено остатки высот квазигеоида (коротковолновые эффекты поля), также построено вклад квазигеоида с модели EGM2008 (длинноволновые эффекты поля), и восстановлено полное поле квазигеоида. Результаты. Построена модель регионального гравитационного поля и сравнение ее с аномалиями силы тяжести с AGP. Также получена модель высот квазигеоида, которую по сравнению с высотами квазигеоида, взятыми 3 49 точек GNSS / нивелирования. Научная новизна и практическая значимость. В данной работе разработана модификация метода ASHA, которая позволяет значительно ускорить процесс нахождения неизвестных коэффициентов при постро¬ении локальных гравитационных полей. Это дает возможность строить локальные гравитационные поля высших порядков. Хорошо известно, что точность квазигеоида зависит от порядка модели. |
URI: | https://ena.lpnu.ua/handle/ntb/31671 |
Content type: | Article |
Appears in Collections: | Геодинаміка. – 2015. – №1(18) |
File | Description | Size | Format | |
---|---|---|---|---|
002_007_017.pdf | 861.71 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.