УДК 624.072.2.012.35:539.374

А.М. Павліков Полтавський національний технічний університет імені Юрія Кондратюка

РОЗРАХУНОК МІЦНОСТІ ЗАЛІЗОБЕТОННИХ ЕЛЕМЕНТІВ У НОРМАЛЬНИХ ПЕРЕРІЗАХ, СИНТЕЗОВАНИЙ НА ОСНОВІ СНИП 2.03.01 84 ТА НЕЛІНІЙНОЇ ДЕФОРМАЦІЙНОЇ МОДЕЛІ

© Павліков А.М., 2010

Викладено синтезовану на основі положень СНиП 2.03.01-84 та властивостей нелінійної деформаційної моделі методику розрахунків міцності елементів у нормальному перерізі.

Ключові слова: розрахункові схеми, залежності, деформаційна модель, рівняння.

The method of strength calculation of elements in the normal section, synthesized of CHиΠ 2.03.01-84 and deformation model, is offered.

Keywords: design scheme, dependences, deformation model, equations.

Постановка проблеми у загальному вигляді та її зв'язок із важливими науковими та практичними завданнями. Для проектування згинальних залізобетонних елементів (ЗБЕ) у розрахунках за міцністю застосовують методику [1]. Це, як відомо, призводить не тільки до завищення їх несучої здатності, але й до перевитрат поздовжньої арматури, котра має ділянку текучості при $\zeta < \zeta_R$. Дещо зменшити цей недолік, як свідчать праці [2 – 6 та ін.], можливо за рахунок використання в розрахунках методики, основаної на повній діаграмі деформування бетону. Водночас, незважаючи на вказані недоліки методика [1], на противагу альтернативним, має істотні переваги – вона проста в інженерних розрахунках, достатньо апробована, характеризується чітким фізичним змістом. Тому актуальною сьогодні проблемою є поєднання кращих якостей двох методик, а саме: в методиці за СНиП 2.03.01-84 доцільно ураховувати особливості розрахунків міцності залізобетонних елементів за нелінійною деформаційною моделлю. Реалізація результатів розв'язання цієї проблеми сприятиме економнішому витрачанню арматури та виявленню резервів несучої здатності ЗБЕ.

Аналіз останніх досліджень і публікацій, де започатковано розв'язання поставленої проблеми. Приклади використання повної діаграми деформування бетону в розрахунках міцності залізобетонних балкових елементів наведено в багатьох роботах [2–6 та ін.]. Але як у цих, так і в інших працях аналітичних досліджень можливості поєднання розрахунків міцності за СНиП 2.03.01-84 та деформаційною моделлю, наскільки нам відомо, не наведено. Тому виконання аналітичних досліджень з метою уточнення на їх основі розрахунків міцності за СНиП 2.03.01-84 з урахуванням особливостей деформаційної моделі залишається нерозв'язаною задачею.

Формулювання цілей статті. Мета – розв'язання задачі поєднання методів розрахунків міцності за СНиП 2.03.01-84 та на основі нелінійної деформаційної моделі, а також розроблення пропозицій щодо реалізації синтезованого методу розрахунку.

Виклад основного матеріалу. Розв'язання задачі здійснено за розрахунковими схеми *a* та *б*, зображеними на рис. 1. Для другої схеми *б* при зображенні епюри розподілу напружень в бетоні стиснутої зони використана функція-апроксимація повної діаграми стану бетону за [8].

Для виведення шуканих залежностей для другої схеми (рис. 1, б) використані:

– рівняння рівноваги

$$\sum X = 0; \quad N_s - N_b = 0, \tag{1}$$

$$\sum M_0 = 0; \quad M - N_b \left(h_0 - X + y_{Nb} \right) = 0, \tag{2}$$

де N_s , N_b – рівнодійні відповідно в арматурі та бетоні; h_0 , X, y_{Nb} – відповідно робоча висота, висота стиснутої зони, відстань від нейтральної лінії до точки прикладання зусилля N_b , рівнодійної напружень стиску, у законі розподілення котрих урахована спадна гілка діаграми стану бетону;

– закон розподілення напружень в бетоні стиснутої зони $s_b = f(h_m, y)$ на основі діаграми стану бетону на стиск у вигляді функції-апроксимації за [8]

$$\sigma_b = R_b (K\eta - \eta^2) / [1 + (K - 2)\eta], \tag{3}$$

в котрій, за умовою прийнятності гіпотези плоских перерізів, приймається така заміна змінних $h = h_m y / X$, а також ураховується, що $K = (E_b \varepsilon_R / R_b) \approx 4 \dots 1$, $\eta = (\varepsilon_b / \varepsilon_R) < K$, E_b , R_b – відповідно модуль пружності та міцність бетону при осьовому стискові;

умова сумісності деформування бетону й арматури

 $\varepsilon_b = \varepsilon_s;$

– апроксимація діаграми стану арматури з фізичною ділянкою плинності

$$\sigma_s = E_s \varepsilon_s$$
 при $\varepsilon_s \le \sigma_y / E_s$, $\sigma_s = \sigma_y$ при $\varepsilon_s > \sigma_y / E_s$; (5)

(4)

– критерій для визначення граничного значення фібрових відносних деформацій бетону $\varepsilon_{bu}(\varepsilon_{Bu}/\varepsilon_R = \eta_u)$ [6,7]

$$M(\eta_u) = M_u = max M(\eta_m).$$
(6)

Рис. 1. Розрахункові схеми до виведення порівняльних залежностей

Для розрахункової схеми на рис.1, б шукані залежності виведені за допомогою підстановки в (1) та (2) таких попередньо отриманих виразів:

$$N_{b} = \frac{R_{b}bX}{h_{m}} \int_{0}^{h_{m}} \frac{Kh - h^{2}}{1 + (K - 2)h} dh = R_{b}bXw,$$
(7)

$$y_{Nb} = S_b / N_b = X \frac{j}{W}, \tag{8}$$

$$S_{b} = \frac{R_{b}bX^{2}}{h_{m}^{2}} \int_{0}^{h_{m}} \frac{(Kh - h^{2})h}{1 + (K + 2)h} dh = R_{b}bX^{2}j \quad .$$
(9)

За допомогою формул (7) – (9) з рівнянь (1) та (2) для другої розрахункової схеми (рис.1, б) остаточні шукані залежності одержані у такому вигляді:

$$A_s R_s = R_b b X w, (10)$$

$$M_{2m} - A_s R_s \left(h_0 - c \cdot \frac{A_s R_s}{R_b b} \right) = 0, \qquad (11)$$

де $\chi = f(\eta_m) = (\omega - \varphi)/\omega^2$, формули для обчислення значень параметрів $\omega = f_I(\eta_m)$ і $\varphi = f_2(\eta_m)$ наведені в [9] (вони отримуються при виведенні залежностей (7) та (9)).

Ураховуючи ту обставину, що для першої розрахункової схеми (рис.1, *a*) залежності (10) та (11) згідно зі СНиП 2.03.01–84 можна записати так:

$$A_s R_s = R_b bx \,, \tag{12}$$

$$M_{1u} = A_s R_s \left(h_0 - 0.5 \frac{A_s R_s}{R_b b} \right) = 0,$$
(13)

а також з використанням фізичного змісту відомих коефіцієнтів a_m та x, рівняння (11) та (13) набувають вигляду:

$$M_{2m} = R_b bx (h_0 - cx) = R_b bh_0^2 x (1 - cx) = \overline{a}_m R_b bh_0^2, \qquad (14)$$

$$M_{1u} = R_b bx (h_0 - 0.5x) = R_b bh_0^2 x (1 - 0.5x) = a_m R_b bh_0^2,$$
(15)

де $\overline{a}_m = x(1-cx)$.

3 (10) та (12), а також з (14) та (15) випливає, що

$$x = \overline{x}W, \qquad (16)$$

$$\bar{a}_m = a_m \frac{1 - cx}{1 - 0.5x} = x\bar{z},$$
(17)

$$\overline{z} = z \frac{1 - cx}{1 - 0.5x} = 1 - cx \,. \tag{18}$$

де \bar{a}_m , \bar{x} та \bar{z} – за фізичним змістом відомі з [1] коефіцієнти, але у цьому випадку в них синтезовані особливості, властиві нелінійній деформаційній моделі при $h_m = h_u$.

Для обчислення значень $h_m = h_u$ використано критерій (6) у вигляді $M_{2m}(h_u) = maxM_{2m}(h_m)$ [7], котрий характеризує такий стан ЗБЕ, коли його опір дії зовнішньому навантаженню досягає максимуму. Спираючись на цей критерій, для визначення значень h_u з рівняння (11) за умовою $\partial M_{2m} / \partial h_m = 0$ отримано диференціальне рівняння

$$c(j(h_m), w(h_m))' = (2j - w)w' - wj' = 0,$$
⁽¹⁹⁾

розв'язок котрого, після підстановки в нього відповідних функціональних залежностей $\omega = f_1(\eta_u)$ і $\varphi = f_2(\eta_u)$ з [9], має вигляд трансцендентного алгебраїчного рівняння відносно $\eta_m = \eta_u$:

$$a^{5}h_{u}^{5} - (K+b)(a+b)a^{4}h_{u}^{4} - 24b^{2}a^{3}h_{u}^{3} + +12(b^{2}-2)b^{2}a^{2}h_{u}^{2} - 12b^{4}c(\ln c)^{2} + 12h_{u}ab^{2}(c+1)c\ln c = 0,$$
(20)

де $a=(K-2), b=(K-1), c=(a \eta_u+1).$

Графічно розв'язки рівняння (20) являють собою діаграму граничних значень рівнів фібрових деформацій (конструкційних деформацій) бетону ЗБЕ в момент досягнення ним максимального опору дії зовнішньому навантаженню (рис. 2). Її можна використовувати у розрахунках.

За фізичною сутністю рівняння (20) являє собою залежно від фізико-механічних властивостей бетону сукупність граничних рівнів фібрових відносних деформацій бетону у ЗБЕ у момент досягнення ним найбільшого опору дії моменту M_{2u} при досягненні поздовжньою розтягнутою арматурою межі текучості. Ці фіброві деформації бетону є критичними деформаціями конструкційної деформативності бетону на діаграмі стану елемента й одночасно є закритичними для діаграми стану бетону.

Оскільки в отриманих залежностях (16) – (20) параметри w, j, c залежать від коефіцієнта K та граничного рівня фібрових відносних деформацій бетону h_u в ЗБЕ, то для зручності їх застосування в розрахунках вони зведені у таблицю залежно від значень K (табл. 1) та значень h_u .

Рис. 2. Графік рівня закритичних фібрових конструкційних деформацій бетону в стиснутій зоні ЗБЕ за (20) залежно від параметра К

Аналіз залежності (16) з урахуванням межі змін параметра $\omega = x/X$ у табл. 1 показує, що визначена за деформаційною моделлю висота стиснутої зони бетону X завжди більша від висоти x, визначеної за СНиП 2.03.01-84. При зміні параметра K в межах 1,18...5 відношення висот стиснутої зони x/X відповідно змінюється в межах 0,587...0,848 (чим нижчий клас бетону ЗБЕ, тим менша різниця між висотою стиснутої зони x, визначеної за СНиП 2.03.01-84, та висотою стиснутої зони X, обчисленою за деформаційною моделлю).

Таблиця 1

	K									
	1,18	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	
ηu	1,075	1,200	1,268	1,309	1,339	1,363	1,382	1,398	1,412	
ω	0,587	0,673	0,732	0,768	0,792	0,811	0,825	0,838	0,566	
φ	0,383	0,421	0,443	0,455	0,462	0,467	0,471	0,474	0,476	
χu	0,591	0,555	0,539	0,531	0,526	0,523	0,520	0,518	0,517	
φ/ω	0,652	0,625	0,605	0,592	0,586	0,576	0,574	0,566	0,561	

Значення параметрів ω, φ, χ_и залежно від значень коефіцієнтів К та η_и

Порівнюючи залежності (14) та (15) з урахуванням зміни параметра χ в табл. 1, можна дійти висновку, що значення руйнівного моменту для одиночно армованого ЗБЕ, обчисленого із застосуванням деформаційної моделі, буде меншим від значень руйнівного моменту, знайденого за СНиП 2.03.01-84. У разі зміни відносного значення висоти стиснутої зони ξ у межах 0,06...0,6, відношення моментів, обчислених за СНиП 2.03.01-84 та деформаційною моделлю M_{1u}/M_{2u} , змінюється в межах 1,006...1,085.

Для спрощення обчислень міцності ЗБЕ розрахункові значення параметрів \overline{a}_m , \overline{z} та \overline{x} приведені до табличної форми залежно від параметра *K* (табл. 2) для відповідних значень ζ за [1].

Таблиця 2

Значення коефіцієнтів $ar{a_m}, ar{z}$ та $ar{x}$ залежно від параметра K для заданих значень $ar{\xi}$

	K=1,18			K=2,5			K=3,0		
X	\overline{x}	\overline{z}	$ar{a}_{\scriptscriptstyle m}$	\overline{x}	\overline{Z}	$ar{a}_{\scriptscriptstyle m}$	\overline{X}	\overline{z}	$ar{a}_{\scriptscriptstyle m}$
0,1	0,170	0,941	0,094	0,130	0,947	0,095	0,126	0,947	0,095
0,2	0,341	0,882	0,176	0,260	0,894	0,178	0,252	0,895	0,179
0,3	0,511	0,823	0,247	0,391	0,841	0,252	0,379	0,842	0,253
0,4	0,681	0,764	0,305	0,521	0,788	0,315	0,505	0,790	0,316
0,5	0,852	0,704	0,352	0,651	0,735	0,367	0,631	0,737	0,369

Висновки. Отримані формули доводять, що між методикою розрахунків міцності ЗБК за нелінійною деформаційною моделлю та сучасною нормативною методикою [1] існують абсолютні аналогії. Виведені формули свідчать, що структуру методики СНиП 2.03.01-84 можна використовувати без змін, але з урахуванням в ній особливостей деформаційної моделі за рахунок уведення в її формули замість коефіцієнтів a_m , x та z уточнених коефіцієнтів \bar{a}_m , \bar{x} та \bar{z} , котрі ураховують відмінності в розрахунках, зумовлених різницею в формах епюр напружень в бетоні стиснутої зони. Запропонована методика та отримані значення коефіцієнтів \bar{a}_m , \bar{x} та \bar{z} дають змогу повною мірою здійснювати розрахунок міцності ЗБК за СНиП 2.03.01-84 з урахуванням особливостей деформаційної моделі.

1. СНиП 2.03.01-84*. Бетонные и железобетонные конструкции. – М.:ЦИТП Госстроя СССР, 1989. – 80 с. 2. Беккиев М.Ю. Расчет изгибаемых железобетонных элементов различной формы поперечного сечения с учетом нисходящей ветви деформирования / М.Ю. Беккиев, Л.Р. Маилян // Методические разработки. – Нальчик: Кабардино-Балкарский агромелиоративный институт, 1985. – 132 с. 3. Бамбура А.Н. К построению деформационной теории железобетона стержневых систем на экспериментальной основе / А.Н. Бамбура, А.Б. Гурковский // Будівельні конструкції. Науково-технічні проблеми сучасного залізобетону: Зб. наук. пр. / Державний НДІ будівельних конструкцій Держбуду України. – Вип. 59. Кн. 1. – К.: НДІБК, 2003.– С.121-130. 4. Байков В. Н. Определение предельного состояния внецентренно сжатых элементов по неупругим зависимостям напряжения-деформации бетона и арматуры / В. Н. Байков, С. В. Горбатов // Бетон и железобетон.– 1985. – № 6.– С. 13–14. 5. Дорофеев В.С., Барданов В.Ю. Расчет изгибаемых елементов с учетом полной диаграммы деформирования бетона / В.С. Дорофеев, В.Ю. Барданов // Монография. – Одесса: Изд-во ОГАСА, 2003. – 210 с. 6. Mitrofanov V.P. Optimization strength theory of reinforced concrete bar elements and structures with practical aspects of its use / Bygningsstatiske meddelelser. Edited and published by the Danish Society for Structural Science and Engeneering. – Kobenhavn, 2000. – Р.73–125. 7. Митрофанов В.П. Екстремальний критерій міцност залізобетонних елементів у деформаційній моделі / В.П. Митрофанов, А.М. Павліков // Будівельні конструкції: зб. наук. праць. – К.: НДІБК, 2005. – Вип. 62. – Т. 1. – С.205–212. 8. Comite' Eurointernational du beton. Code modele CEB-FIP pour les structures en beton (Version de reference)/ Bulletin d' information N 124/125 – F. – Paris, 1978. 9. Павліков А.М. Розрахунок площі поздовжньої арматури в згинальних елементах з використанням деформаційної моделі / А.М. Павліков // Вісник Одеської державної академії будівництва та архітектури: зб. наук. праць. – ОДАБА, 2009. – Bun. 33. . – C.119–125.