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Existing methods of providing data anonymity preserve individual privacy, but, the task of 
protecting respondent groups' information in publicly available datasets remains open. Group 
anonymity lies in hiding (masking) data patterns that cannot be revealed by analyzing individual 
records. We discuss main corresponding problems, and provide methods for solving each one. 
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Problem Definition 
Year to year, the amount of the digital data grows rapidly [1], and so does the possibility to access 

them. By analyzing primary data, the researchers can get much more information than it is contained in 
different tables, charts or graphs built using these data even for the most detailed reports. Moreover, they 
can receive an opportunity to find out different patterns and distribution features that weren't distinguished 
at the time of the first data publishing. Also, it may be very useful to compare the primary data obtained 
from different sources. 

In this paper, we suppose the data owner releases a depersonalized microfile. That is a file consisting of 
data records, and each of them contains some attribute (variable) values interesting for the researches but no 
direct identifiers (such as Social Security Number or full name). Sometimes such microfiles can be publicly 
available. For instance, sample 5 per cent data on the U.S. Census-2000 [2] can be easily accessed via the 
Internet. But, in most cases, to gain access to the data, it is required to explain to the data owner the purpose of 
the planned research (by filling a simple request form). For instance, you need to do this if you want to get an 
access to 279 million person records collected from 130 censuses of 44 countries provided by IPUMS [3]. 

Usually, the access is given not to the complete primary data sets but to the data samples. In 
addition, some attribute's values are masked somehow, or even are absolutely unavailable. These 
restrictions are necessary to provide the published data anonymity, which is a subject to special legal 
regulation in different countries (e.g., see the Health Insurance Portability and Accountability Act of 1996 
(HIPAA) [4], and the Patient Safety and Quality Improvement Act of 2005 (PSQIA) [5] concerning the 
health protection data in the USA, or Directive on privacy and electronic communications [6] about 
electronic commerce in the EU, or the State Statistics Law [7] about providing confidentiality of the 
primary statistical information in Ukraine). 

Anonymity is derived from the Greek word  meaning "without a name" or "namelessness". 
In a consolidated proposal for terminology [8], anonymity of a subject means that the subject is not 
identifiable (uniquely characterized) within a set of subjects. Then, data anonymity, as we understand it in 
this paper, means that the respondents' records cannot be identified within a microfile. 
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Based on the model of an anonymous message transmission system there can be distinguished two 
anonymity classes, namely, global and individual [8] (or local [9]) anonymity. Whether the anonymity 
belongs to a particular class depends on its purpose. It can be achieved for the users corresponding to the 
message (senders or recipients) globally (for all such users), or for each user individually. In the terms of 
the task under review in this paper, such classes won't be differentiated [10], and will be considered as the 
anonymity of individuals or individual data anonymity (property of being unidentifiable within a group). 

We have to pay attention to several other important positions connected with the term of anonymity. 
When the systems for anonymous communication were studied, the term of the degree of anonymity 

was introduced [11]. If to apply this term to the field under review in this paper, we can admit that the 
degree of anonymity provided against an attacker can be viewed as a continuum, ranging from complete 
anonymity ("absolute privacy") (when the attacker cannot perceive the presence of some respondents in the 
data sample) to no anonymity ("probably exposed") (when the attacker can identify the personal 
respondent record). 

While discussing the term of anonymity, it is important to note that there exists a set of similar (and 
sometimes even overlapping) but different information-hiding requirements [12], [13], [8] such as 
noninterference, privacy, confidentiality, secrecy, unlinkability etc., but they are not the subject to this paper. 

In [28], the term "group anonymity" has been introduced. The aim of group anonymity is to hide or 
mask data patterns, features, distributions that cannot be revealed by analyzing individual records only. In 
other words, group anonymity implies providing anonymity of a respondent group with specific features, 
or even with particular values or value ranges corresponding to the predefined attributes. 

We can define two basic techniques for solving the task of providing group anonymity. 
The first one subtends to view this task as the task of providing individual anonymity. To do that, we 

might introduce an equivalence relation (i.e., "be of the same age") on the respondent set. As a result, we 
obtain disjoint equivalence classes. Then we can apply individual anonymity methods to the corresponding 
factor set (for instance, we can hide "100 years old people" among the wider group of "elderly people"). 

The second technique implies masking the true respondent group distribution over a specific 
attribute (which we will call a parameter attribute in Section 4.1. For example, we can set a task of 
masking the regional distribution of the military personnel, or a task of masking the distribution of the 
diseased people over different strata etc. This technique requires developing totally novel specific methods 
for providing group anonymity. In this paper, we will actually focus on these precise methods. 

But, each of the methods discussed in Section 4.1 for providing group anonymity can be 
accomplished using two different approaches. We decided to call the first one an extremum transition 
approach. We will call the second one an "Ali Baba's wife" approach. 

An extremum transition approach (according to its name) implies transitting records with specific 
attribute value combinations from the positions of their extreme quantity to the other possible ones. 

The name of the second approach goes back to the Middle Eastern and South Asian stories and folk 
tales collection named "One Thousand and One Nights". In one of the tales, the thieves marked the Ali 
Baba's house with a symbol to be able to distinguish it when committing their crime. But, Ali Baba's wife 
saved her husband from inevitable death by marking all the houses in the neighborhood with the same 
symbol. In terms of our paper, this approach means that we don't need to eliminate extreme quantity. 
Instead, we can conceal it by adding several other alleged ones. 

On the other hand, when providing group anonymity (as well as individual one) we have to 
guarantee that the data utility is not reduced significantly. To ensure that, we can use WT special features. 
Using WT, we can split the primary data into an approximation and multilevel details. Then, to protect 
data, we can redistribute approximation values, and at the same time prevent utility loss by fixing the 
details (or altering them only proportionally). To illustrate that, let us refer to [29]. In Russia, the responses 
to 44 different public polls (1994-2001) showed the following result. Actually, the details reflect hidden 
time series features which are extremely useful for near- and medium-term social processes forecasting. 

1. Related Work 
The restrictions required by providing the data anonymity of individuals are as important as 

comprehensive. That's why they are having been successfully studied by the researchers in such fields as 
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statistical disclosure control [14], privacy-preserving data mining [15], distributed privacy, cryptography 
and adversarial collaboration [16] for many years now. 

Nowadays, the data anonymity is achieved by using perturbative and/or non-perturbative methods for 
masking microfile data (as it can be found in [17]). The perturbative methods modify particular microfile values 
(for example, consider data swapping [18], microaggregation [19], rounding [17] and others). At the same time, 
such methods as generalization, top and bottom coding, and local suppression described in [14] belong to the 
non-perturbative ones as they let to mask some value combinations without altering them. 

There have been also determined two main principles for providing individual data anonymity, i.e. 
randomization and k-anonymity. The core of the data randomization (refer to [15], [20]) lies in adding 
noise to the data to mask records' attribute values. Another principle discussed in [10], [21] (namely, k-
anonymity) means that every attribute values' combination corresponds to at least k respondents in the 
microfile with the same combination. Some authors [22] call the situation when it is impossible to find out 
a specific individual among a respondent group a group anonymity. But, in our opinion, this name is not 
suitable for this situation because it concerns the individual respondent anonymity inside a specific group 
rather than the respondent group anonymity itself. 

Recently, two novel techniques have been proposed to provide data anonymity. The first one is 
based on the structure transformations of the data matrix (it could possibly be the microfile data). Two 
methods representing such a technique are singular value decomposition [23] and nonnegative matrix 
factorization [24]. The second technique implies using Fourier transformation [25] or wavelet 
transformation (WT) [26], [27]. 

But, all the discussed principles and techniques intend to provide mainly the data anonymity of 
individuals.  

2. The Aim of the Paper 
In the current paper we aim at analyzing the main kinds of tasks that arise when providing group 

anonymity. 
Along with this, we introduce methods for solving them which are based on the WT approximation 

values redistributing with simultaneous fixing the WT details. 

3. Wavelet Theory Basics  
In this paper, all the necessary data modifications are accomplished by using WT which is relatively 

easy-to-use and powerful enough to serve well in our task. That's why we need to revise those wavelet 
theory facts that are important for the further explanations. For the detailed information refer to [30], [31]. 

Let us denote by 1 2( , ,..., )ms s s s=  a discrete signal. In addition, let 1 2( , ,..., )nh h h h=  be a high-

pass wavelet decomposition filter, whereas 1 2( , ,..., )nl l l l=  will represent a low-pass wavelet 
decomposition filter. 

We can perform one-level wavelet decomposition the following way: 

1 12 2;n na s l d s h↓ ↓= ∗ = ∗ . (1) 

Here, 2n↓∗  stands for a convolution with a follow-up dyadic downsampling. 

In (1), 1a  and 1d  are arrays of approximation and detail coefficients at level 1 respectively. 
We can also apply one-level wavelet decomposition to approximation coefficients at any level k–1. 

As a result, we will receive approximation and detail coefficients at level k. In general, to obtain 
coefficients at any level k, we need to carry out the following operations: 

2 2(( ) )n nk
k times

a s l l↓ ↓∗ ∗= ; (2) 

2 2 2

1

((( ) )... )n n nk
k times

d s l l h↓ ↓ ↓

−

∗ ∗ ∗= . (3) 
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Any signal s can be presented as a sum of an appropriate approximation and details: 

1

k

k i
i

s A D
=

= + . (4) 

In (4), kA  is an approximation at level k, and each iD  is a detail at a particular level i.
The connection between approximation and details, on the one hand, and corresponding coefficients, 

on the other hand, is as follows: 

2 2(( ) )k k n n
k times

A a l l↑ ↑= ∗ ∗ ; (5) 

2 2 2((( ) ) )k k n n n
k-1 times

D d h l l↑ ↑ ↑= ∗ ∗ ∗ . (6) 

In these formulae, 2n↑∗  stands for a dyadic upsampling of the left operand and the follow-up 

convolution with the right one. 
But, (5) and (6) aren't the only possible ways of receiving approximations and details. In [31], it has 

been shown that such operations can be replaced with matrix multiplications. Particularly, we can slightly 
extend this approach and obtain kA  as follows: 

k rec kA M a= ⋅ . (7) 

We will call recM  a wavelet reconstruction matrix (WRM). It can be received by consequent 
multiplications of appropriate matrices for upsampling and convolution described in [31]. 

The structure of a WRM is very handy for all the methods under review in this paper, that's why it 
will be heavily used in the next section. 

4. Group Anonymity Tasks 
In fact, there exist different kinds of tasks for group anonymity which can be solved by similar but a 

bit different methods. Actually, every next problem can be solved by using a slight modification of a 
method for solving the previous one. But, before we start discussing the simplest of all group anonymity 
tasks, we have to introduce important terms. 

So, let the given microfile data be presented in a way similar to Table 1. Here,  is the overall 
number of respondents (records),  is the overall number of attributes; jw  stands for the jth attribute, ir

stands for the ith record, ijz  stands for the jth attribute value corresponding to the ith record. 

Table 1 
Microfile Data 

1w 2w … wη

1r 11z 12z … 1z η

2r 21z 22z … 2z η
… … … … … 
rμ 1zμ 2zμ … zμη

The core of each group anonymity method is to redistribute specific elements ijz . By doing that, we 

can guarantee that important group features and patterns are masked. 
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To start redistributing, we need to decide which microfile elements we'll be eager to redistribute. 
Since redistributing always implies transmitting particular values over particular value ranges, we need to 
introduce two important value sets. 

Let's denote by vS  a subset of a Cartesian product 
1 2

...
lv v vw w w× × ×  of Table 1 columns, where 

iv , 1,i l=  are integers. The set itself will be called a vital set, and each vector from this set will be called 

a vital value combination. Respectively, we will call each element of such a vector a vital value, and
ivw ,

1,i l=  will be called a vital attribute.
The vital set represents those attributes that will be used for defining records to be transmitted. E.g., 

if we wanted to change regional distribution of middle-aged men we would need to pick "Age" and "Sex" 
as vital attributes. In this case, we would receive a vital value combination ("Male"; "Age 45–65"). 

Let us also denote by pS  a subset of microfile data elements corresponding to the pth attribute, 

1,ip v i l≠ ∀ = . This set will be called a parameter set. All its elements will be called parameter values,
whereas the pth attribute will be called a parameter attribute.

The parameter set represents an attribute that will serve as a value range to redistribute vital values 
over. With the case of the middle-aged men, the parameter attribute could possibly be "Country region", 
"Ethnic group", or "Place of work" depending on the problem definition. 

In other words, providing group anonymity actually means redistributing vital value combinations 
over a value range determined by parameter values. 

Now, after having defined necessary value sets, we can proceed to discussing different kinds of 
group anonymity problems and methods for solving each of them. 

4.1. Quantity Problem. The first (and the simplest) class represents cases when our aim is to hide or 
mask extreme quantities of records with a particular vital value combination. In some cases, such extremums 
can reveal restricted information and lead to its unwanted disclosure. Therefore, we need to redistribute records 
with these vital value combinations such way that these extremums cannot be found out. 

To illustrate the method to be explained further, we took 5-Percent Public Use Microdata Sample 
Files from the U.S. Census Bureau [2] corresponding to the 2000 U.S. Census microfile data on the state of 
Florida and set a task of protecting the distribution of military personnel over the regions they work in. 

A great aid in solving this task is WT. To be able to apply it, we have to construct a signal 
representing quantities to be changed. For this purpose, we need to calculate the number of microfile 
records with every pair of a vital value combination and a parameter value possible. Received quantities 
can be gathered into a signal 1 2( , ,..., )mq q q q=  which will be called a quantity signal.

In our example, the only vital attribute is "Military Service", and the only vital value is "1" which 
stands for "Active Duty". 

Since military personnel will be redistributed over the regions they work in, we took "Place of Work 
PUMA" (where PUMA stands for "Public Use Microdata Area") as a parameter attribute. We also took the 
parameter values representing each PUMA area corresponding to Florida, i.e. each 10th value in the range 
12010–12180. 

Considering these attributes, we received a following quantity signal: q=(669, 794, 9, 11, 852, 9, 4, 
280, 31, 118, 6, 13, 1, 24, 7, 14, 18, 135). 

Our next aim is to receive a new quantity signal 1 2( , ,..., )mq q q q=  by altering the wavelet 
approximation of the initial one. It may sound odd but we cannot change the signal's approximation itself, 
mainly because the wavelet decomposition of a new signal will yield totally different approximation and 
details. The only possible option to modify signal's approximation is to modify approximation coefficients. 
As it follows from (5) and (6), the details do not depend on the approximation coefficients, so modifying 
them doesn't influence the details. 
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Performing the signal q wavelet decomposition using the first order Daubechies wavelet filter, we 
get the following approximation coefficients: 1a =(1034.4972, 14.1421, 608.8189, 200.8183, 105.3589, 

13.4350, 17.6777, 14.8492, 108.1873). Also, we can obtain a signal's approximation: 1A =(731.5, 731.5, 

10, 10, 430.5, 430.5, 142, 142, 74.5, 74.5, 9.5, 9.5, 12.5, 12.5, 10.5, 10.5, 76.5, 76.5), and a signal's detail: 

1D =(–62.5, 62.5, –1, 1, 421.5, –421.5, –138, 138, –43.5, 43.5, –3.5, 3.5, –11.5, 11.5, –3.5, 3.5, –58.5, 

58.5). Both the approximation and the detail are presented in Fig. 1. 

Fig. 1. Wavelet decomposition of signal q at level 1: a) approximation; b) detail 

But, how can we possibly define what coefficients to change and how to obtain new approximation with 
suitable properties? The answer lies in the structure of a corresponding WRM. Taking into consideration (7), we 
can always determine how to change approximation coefficients to gain needed approximation. 

For instance, in our case with the first order Daubechies wavelet filter, we get the WRM presented in 
Fig. 2. 

Fig. 2. WRM for reconstructing signals of length 18 using the first  
order Daubechies wavelet from level 1 
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As we can see, there are extremums in the 2nd and the 5th signal q elements. Coming from the WRM 
structure, we can see that modifying one approximation coefficient results in modifying two neighboring 
approximation elements. If we take a look at Fig. 1b we will see that the 5th and the 6th detail elements are 
the reason for the one of the extremums mentioned. All this means we cannot eliminate it completely by 
changing details only proportionally. That's why the only option left is to apply "Ali Baba's wife" 
approach. For example, we can enlarge elements of the second half of the signal so that initial maximums 
are similar to them. Besides, it would be also important to preserve the approximation mean value. All that 
can be completed if to pick such approximation coefficients: 1̂a =(334.3871, 390.1183, –445.8494, 
55.7312, 167.1935, 445.8494, 501.5806, 390.1183, 278.6559). We have to note here that such coefficients 
are not exlusive and can be substituted with others that fulfil the mentioned requirements. 

Using chosen coefficients, we can get a new approximation and a new quantity signal (the signal is 

obtained by adding the old detail to the new approximation): 1Â =(236.4474, 236.4474, 275.8553, 
275.8553, –315.2632, –315.2632, 39.4079, 39.4079, 118.2237, 118.2237, 315.2632, 315.2632, 354.6711,
354.6711, 275.8553, 275.8553, 197.0395, 197.0395); q̂ =(173.9474, 298.9474, 274.8553, 276.8553, 
106.2368, –736.7632, –98.5921, 177.4079, 74.7237, 161.7237, 311.7632, 318.7632, 343.1711, 366.1711,
272.3553, 279.3553, 138.5395, 255.5395). 

But, as we can see, some signal elements are negative! This is totally unacceptable. To overcome 
this problem, we need to subtract from every signal's value an arbitrary negative value to make all the 
elements positive. E.g., in our case we can take –800. 

Though, another problem arises. The mean value of the resultant quantity signal differs from the mean 
value of the original one. This is a great backfire because we can only redistribute military officers not create 
new ones! To fix this error, we have to multiply our signal by a corresponding coefficient 
18 18

1 1
ˆ/i i

i i
q q

= =
=0.1722: q =(167.6903, 189.2123, 185.0642, 185.4085, 156.0322, 10.8879, 120.7655, 168.2861, 

150.6063, 165.5857, 191.4188, 192.6241, 196.8265, 200.7866, 184.6337, 185.8390, 161.5939, 181.7385). 
If to perform the wavelet decomposition of this signal we get the following detail: 1D =(–15.6055, 

15.6055, –0.2497, 0.2497, 105.2432, –105.2432, –34.4569, 34.4569, –10.8614, 10.8614, –0.8739, 0.8739,     
–2.8714, 2.8714, –0.8739, 0.8739, –14.6067, 14.6067). As we can see, this detail is actually the initial one 
multiplied by 4.0050. This means our method actually ensures that the details are changed proportionally. 

Finally, we need to round our signal since quantities have to be integers: q =(168, 189, 185, 185, 
156, 11, 121, 168, 151, 166, 191, 193, 197, 201, 185, 186, 162, 182). 

Alas, we obtain our desired quantity signal with a totally different distribution but with all the 
wavelet details preserved. Of course, rounding the signal can produce slight changes in the details but these 
changes do not pose a big threat to preventing utility loss. 

Both the initial and the resultant quantity signals are presented in Fig. 3. 
After receiving new quantities, the only thing left is to construct a new microfile by changing 

records' attribute values such way that the number of military personnel in every region is equal to the 
corresponding element of the quantity signal q .

4.2. Concentration Problem. Of course, the task from the previous subsection is important but in 
most cases absolute quantities do not provide the representative information on respondents and thus 
redistributing them may lead to a serious loss of data utility. 

In this subsection we will discuss another class of group anonymity problems that arise mainly when 
the task is to hide extreme ratios rather than extreme absolute quantities. 

The method for solving such problems requires performing one additional signal transformation, 
though all the other algorithm steps remain the same. 
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Fig. 3. Quantity signals for the quantity problem: a) initial; b) resultant 

To illustrate this method, we will take the same data we took before. 
After having constructed a quantity signal (it can be found in the previous subsection), we need to 

transform it into a concentration signal 1 2( , ,..., )mc c c c= . This signal is obtained by dividing every 
quantity signal's element by the overall number of respondents with the same parameter value and the vital 
values representing the group of records which comprises the records to be redistributed. In our case, we 
divided the military personnel quantities by the total number of employed people in each region. We 
received the following concentration signal: c=(0.0799, 0.0738, 0.0009, 0.0010, 0.0331, 0.0009, 0.0006, 
0.0055, 0.0008, 0.0113, 0.0006, 0.0014, 0.0001, 0.0021, 0.0006, 0.0006, 0.0006, 0.0029). 

The next steps should be carried out as before. 
Using the same wavelet filter we used earlier, we get the following approximation coefficients, 

approximation, and detail: 1a =(0.1087, 0.0014, 0.0240, 0.0043, 0.0085, 0.0015, 0.0016, 0.0009, 0.0025); 

1A =(0.0768, 0.0768, 0.0010, 0.0010, 0.0170, 0.0170, 0.0031, 0.0031, 0.0060, 0.0060, 0.0010, 0.0010, 

0.0011, 0.0011, 0.0006, 0.0006, 0.0018, 0.0018); 1D =(0.0030, –0.0030, –0.0000, 0.0000, 0.0161, –0.0161,   
–0.0025, 0.0025, –0.0053, 0.0053, –0.0004, 0.0004, –0.0010, 0.0010, 0.0000, –0.0000, –0.0012, 0.0012). 

As we can see, there are extremums in the 1st and the 2nd signal elements. To mask them using "Ali 
Baba's wife" approach, we can pick such new approximation coefficients: 1̂a =(0.0268, 0.0268, –0.0307, 
0.0038, 0.0115, 0.0383, 0.0268, 0.0307, 0.0192). Using (7), we get the following new approximation and 
concentration signal: 1Â =(0.0190, 0.0190, 0.0190, 0.0190, –0.0217, –0.0217, 0.0027, 0.0027, 0.0081, 0.0081, 
0.0271, 0.0271, 0.0190, 0.0190, 0.0217, 0.0217, 0.0135, 0.0135); ĉ =(0.0220, 0.0159, 0.0189, 0.0190, –0.0056, 
–0.0378, 0.0002, 0.0052, 0.0029, 0.0134, 0.0267, 0.0275, 0.0180, 0.0200, 0.0217, 0.0217, 0.0124, 0.0147). 

As in the case with the absolute quantities, we need to make our signal completely positive (by 
subtracting appropriate negative value, e.g. –0.5). 

Now, we need to return to the quantity signal. We can easily accomplish that by multiplying every 
concentration signal element by the overall number of employed people in each region: q̂ =(4371.8096, 
5550.8392, 5024.7454, 5636.4255, 12732.8738, 4692.9790, 3459.6336, 25602.6591, 20060.5934, 5366.4042, 
4946.7006, 4755.9042, 4549.9511, 5991.3911, 5821.1188, 12584.3353, 15712.6136, 23768.0194). 

The next step is to multiply the signal by the coefficient 
18 18

1 1
ˆ/i i

i i
q q

= =
=0.0176 in order not to 

change its mean value: q =(76.7371, 97.4322, 88.1979, 98.9345, 223.4963, 82.3745, 60.7259, 449.3959, 
352.1176, 94.1949, 86.8280, 83.4790, 79.8639, 105.1651, 102.1764, 220.8891, 275.7988, 417.1930). 

We can decompose this signal and get the following detail: 1D =(0.0030, –0.0030, –0.0000, 0.0000, 
0.0161, –0.0161, –0.0025, 0.0025, –0.0053, 0.0053, –0.0004, 0.0004, –0.0010, 0.0010, 0.0000, –0.0000,        
–0.0012, 0.0012). 
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As we see, in this case the resultant detail is totally equal to the initial one. 
Of course, we need not to forget to round the result: q =(77, 97, 88, 99, 223, 82, 61, 449, 352, 94, 

87, 83, 80, 105, 102, 221, 276, 417). 
Both initial and resultant quantity signals are presented in Fig. 4. It is important to note that though the 

concentration signals were altered mostly the same way the quantity signals from the previous subsection were, 
the resultant quantities in this example have a completely different distribution. Even applying "Ali Baba's wife" 
approach to the concentration signals we actually got the extremum transition approach for the corresponding 
quantity signals. This means modifying concentrations can yield a totally different outcome. 

Fig. 4. Quantity signals for the concentration problem: a) initial; b) resultant 

4.3. Concentration Difference Problem. Though the previous method is absolutely acceptable for 
solving the most frequent and important practical problems, there is another class of group anonymity tasks 
which aim mainly at protecting comparative distributions. For example, if there are much more young males 
than females in a particular region it can possibly be a hint to finding out a location of a military cantonment. 

The method we propose to use for solving tasks of this kind is very similar to the two described 
before. It requires following one additional step but it is free of a "negative elements" trouble. 

We will define two different vital value sets. The first one will be called a main vital set, and the 
other one will be called a subordinate vital set. Each vector from the main vital set will be called a main 
vital value combination. Respectively, each element of this vector will be called a main vital value.

By analogue, each vector from the subordinate vital set will be called a subordinate vital value 
combination, whereas each element of such a vector will be called a subordinate vital value.

As in the previous subsections, we need to construct main and subordinate quantity signals taking 
into account main and subordinate vital value combinations respectively. 

To illustrate this new method, we took "Sex" and "Age" as vital attributes. In particular, we took a 
made-up value "Young age" (which comprises actual "Age" values from "18" to "25") as both main and 
subordinate vital value; at the same time, we took "Sex" value "1" (standing for "Male") as a main vital 
value, and value "2" (standing for "Female") as a subordinate vital value. 

We received the following quantity signals ( 1q stands for the main quantity signal, and 2q stands for 

the subordinate one): 1q =(885, 931, 863, 996, 2014, 683, 435, 3212, 3037, 584, 712, 607, 690, 678, 689, 

1458, 1865, 2947); 2q =(591, 713, 876, 982, 1798, 629, 373, 3110, 2725, 579, 584, 452, 438, 580, 578, 
1246, 1806, 2821). 

According to the previous subsection, we need to construct concentration signals. We decided to 
divide received quantities by the overall number of people in a particular region, yielding the following 

signals: 1c =(0.1057, 0.0865, 0.0891, 0.0917, 0.0782, 0.0673, 0.0629, 0.0634, 0.0761, 0.0559, 0.0758, 
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0.0673, 0.0786, 0.0588, 0.0617, 0.0604, 0.0608, 0.0638); 2c =(0.0706, 0.0663, 0.0905, 0.0904, 0.0698, 
0.0620, 0.0539, 0.0614, 0.0683, 0.0554, 0.0622, 0.0501, 0.0499, 0.0503, 0.0518, 0.0516, 0.0589, 0.0611). 

Now we came close to the step which is new to our previous algorithm. We need to build up 

a concentration difference signal as follows: 1 2 1 2 1 2
1 2 1 1 2 2( , ,..., ) ( , ,..., )m m mc c c c c cδ δ δ δ= ≡ − − − . In our 

example, we got the following signal: δ =(0.0351, 0.0203, –0.0013, 0.0013, 0.0084, 0.0053, 0.0090, 
0.0020, 0.0078, 0.0005, 0.0136, 0.0172, 0.0287, 0.0085, 0.0099, 0.0088, 0.0019, 0.0027). 

Since our target is to redistribute these precise concentration differences, we need to treat this signal 
the same way we've done before. At first, we need to get the approximation coefficients, approximation, 
and detail: 1a =(0.0392, –0.0000, 0.0097, 0.0078, 0.0059, 0.0218, 0.0263, 0.0132, 0.0033); 1A =(0.0277, 
0.0277, –0.0000, –0.0000, 0.0069, 0.0069, 0.0055, 0.0055, 0.0041, 0.0041, 0.0154, 0.0154, 0.0186, 0.0186, 
0.0094,  0.0094,  0.0023,  0.0023);  1D =(0.0074,  –0.0074,  –0.0013,  0.0013,  0.0015,  –0.0015,  0.0035,   
–0.0035, 0.0037, –0.0037, –0.0018, 0.0018, 0.0101, –0.0101, 0.0006, –0.0006, –0.0004, 0.0004). 

As we can see, there are extremums in the 1st and the 13th signal elements. To mask them using "Ali Baba's 
wife" approach, we can pick such new approximation coefficients: 1̂a =(0, 0.0212, 0.0141, 0.0141, 0.0141, 
0.0212, –0.0212, 0.0282, 0.0353). Using (7), we can get the following new approximation and concentration 
difference signal: 1Â =(0, 0, 0.0150, 0.0150, 0.0100, 0.0100, 0.0100, 0.0100, 0.0100, 0.0100, 0.0150, 0.0150, –

0.0150, –0.0150, 0.0200, 0.0200, 0.0250, 0.0250); δ̂ =(0.0074, –0.0074, 0.0137, 0.0163, 0.0115, 0.0084, 0.0135, 
0.0065, 0.0137, 0.0063, 0.0132, 0.0168, –0.0049, –0.0251, 0.0205, 0.0194, 0.0246, 0.0254). 

If we perform a wavelet decomposition of the resultant concentration difference signal, we will 
receive the same detail as we received before. 

Since the differences can be negative, we do not need to make our signal completely positive. 
The next step is to retrieve new concentrations using the differences above. We can always 

accomplish that by solving a corresponding linear equation system with 2m unknowns and m equations 
(the equations have to ensure that the differences between new concentrations will be equal to the 
concentration difference signal elements). 

For instance, we can get the following signals: 1ĉ =(0.0780, 0.0865, 0.1041, 0.1067, 0.0813, 0.0704, 
0.0674, 0.0679, 0.0820, 0.0617, 0.0754, 0.0669, 0.0786, 0.0588, 0.0723, 0.0710, 0.0834, 0.0865); 

2ĉ =(0.0706, 0.0940, 0.0905, 0.0904, 0.0698, 0.0620, 0.0539, 0.0614, 0.0683, 0.0554, 0.0622, 0.0501, 
0.0834, 0.0839, 0.0518, 0.0516, 0.0589, 0.0611). 

Now, we need to return to the quantity signals. We can easily accomplish that task by multiplying 

each concentration signal element by the overall number of people living in each region: 1q̂ =(653.1524, 
931, 1008.2600, 1158.9168, 2094.6127, 714.7812, 466.0843, 3439.7838, 3269.7099, 644.9776, 707.9116, 

603.0753, 690, 678, 807.2578, 1713.6776, 2559.0257, 3992.0670); 2q̂ =(591, 1010.8445, 876, 982, 1798, 
629, 373, 3110, 2725, 579, 584, 452, 732.8917, 966.8440, 578, 1246, 1806, 2821). 

The next step is to multiply the signals by the coefficients 
18 18

1 1

1 1
ˆ/i i

i i
q q

= =
=0.8911 and 

18 18
2 2

1 1
ˆ/i i

i i
q q

= =
=0.9552 in order not to change their mean values, and to round the results: 1q =(582, 830, 

898, 1033, 1866, 637, 415, 3065, 2914, 575, 631, 537, 615, 604, 719, 1527, 2280, 3557); 2q =(565, 966, 
837, 938, 1717, 601, 356, 2971, 2603, 553, 558, 432, 700, 924, 552, 1190, 1725, 2695). 

Both initial and resultant quantity signals are presented in Fig. 5 and Fig. 6. It is important to note 
that the distribution of the young males hasn't changed significantly. Though, due to the females' 
distribution we gain the desired outcome. 
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Fig. 5. Quantity signals for the concentration difference problem (males): a) initial; b) resultant 

Fig. 6. Quantity signals for the concentration difference problem (females): a) initial; b) resultant 

Conclusions and Future Research 
Anonymity is a methodological requirement which lies in the fact that a respondent isn't supposed to 

be identified (in order to prevent possible usage of the received data against his or her will). In this paper, 
we found out that the widely used term of data anonymity in fact is used only as a synonym to the 
anonymity of individuals, i.e. it means that the respondents' records are not identifiable within a dataset. 
But, in this paper we set a totally different task of providing group anonymity as anonymity of a 
respondent group. In some cases, this task can be viewed as an individual anonymity task by constructing 
specific respondent groups and follow-up anonymizing them as separate entities. But, in most other cases 
the group anonymity task supplies special problems, solving which requires applying novel methods. 

In the paper, three main problem kinds immanent to the task under review have been analyzed. They 
are as follows: providing group anonymity for the absolute quantities, for the ratios and for the differences 
between the ratios. For each problem kind, detailed examples with different approaches to applying a 
proposed method have been provided. 

The group anonymity problem seems to have a simple solution only at first sight. It seems easy to 
arbitrarily change the respondent group's distribution over the parameter values (the territory, the age, the 
ethnic groups etc.). The main question is how much utility will remain in the data after such 
transformations. To provide balance between protecting privacy and preserving data utility, we proposed a 
method which is based on using WT. Using it, we can redistribute the WT approximation (to provide 
anonymity) and fix the WT details or alter them proportionally (to preserve the data utility). 
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The future researches can lie in introducing the group anonymity measure and in developing optimal 
algorithms for constructing a microfile with the transformed distribution. 
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