Pattern Keys Investigation for Content-Based Image Retrieval System

Roman Melnyk, Ruslan Tushnytskyy

Abstract – An approach to search images from a databases by structural features got from the three stages clustering algorithm is considered. Image key forming investigation for visual pattern processing is presented.

Keywords – clustering, content-based image retrieval, structural properties, visual pattern.

I. INTRODUCTION

The existent universal content-based image retrieval (CBIR) systems attribute to one of three categories depending on approach of extracting features: a histogram, coloured location, and region-based. A successful categorization of images will greatly enhance the performance of CBIR systems by filtering out images from irrelevant classes during matching.

II. CBIR PROBLEM

In general, the content-based image retrieval problem is to create a image set that are relevant to the user's image-request, arranged in order of decreasing relevance, and the need to choose the optimum between the minimization and maximization of relevance images [1, 2].

We describe a mathematical model of the image search and introduce some basic concepts:

1. The set P of all images in a database, consisting of n images classes:

$$P = \{P_1, P_2, \dots, P_n\} = \{\{p_{11}, p_{12}, \dots, p_{1k}\}, \dots, \{p_{n1}, p_{n2}, \dots, p_{nm}\}\}$$
(1)
2. *I* set with corresponding images indices:

 $I = \{I_1, I_2, ..., I_n\} = \{\{i_{11}, i_{12}, ..., i_{1k}\}, ..., \{i_{n1}, i_{n2}, ..., i_{nm}\}\}$ (2)

Each index represents a set with image keys number g, where each key is a set of r image features:

$$i = \{i^{1}, ..., i^{g}\} = \{\{k_{1}^{1}, k_{2}^{1}, ..., k_{r_{1}}^{1}\}, ..., \{k_{1}^{g}, k_{2}^{g}, ..., k_{r_{g}}^{g}\}\}$$
(3)

3. Input user's image-query p_u , belongs to a P_w class:

An optimization problem is to find images set P_{res} by the user's image query p_u :

$$P_{res}(p_u) = \{\{p_{11}(i_{11}), \dots, p_{1q}(i_{1q})\}, \dots, \{p_{v1}(i_{v1}), \dots, p_{vs}(i_{vs})\}\}$$
(4)
that satisfies the following conditions:

$$d(i_u(p_u), i(p)) \rightarrow \min, f(P_{res}, P_w) \rightarrow \max, p \in P, i \in I, (5)$$

$$v \to \min, q, s \to \max, t \to \min,$$
 (6)

where: d - a distance function between the key features of an image query p_u and image p in the database; f - a similarity function (relevance) of classes $P_1, ..., P_v$ result set on the P_{res} -class image query P_w ; v - number of resulting classes image; q, s – the number of images in each result class; t – the receipt

Roman Melnyk, Ruslan Tushnytskyy -

time of the result set; p(i) (or P(I)) – in general, means of obtaining p (or image group P) from the database by an index i (group index I); i(p) (or I(P)) – generally means getting index i (or building new if absence in the repository indexes) (group index I) for the image p (image group P).

III. PATTERN KEYS INVESTIGATION

For image indexing investigation a set *A* with $3 \times 8 = 24$ pattern features and set *B* with $3 \times 8 + 2 = 26$ pattern features were took:

$$A = A\{BI_D(C, XY), BI_D(CR, XY), BI_D(IA, XY)\}$$
(7)

$$B=B\{CR, IA, C_D(XY), CR_D(XY), IA_D(XY)\}$$
(8)

Fig.1 illustrates classification result for 3 semantic groups: dinosaurs, flowers, busses and animals (lions + elephants).

Fig.1. Clustering results for pattern feature sets A (a) and B (b).

IV. CONCLUSION

An approach to solving content-based image retrieval problem using 4-D structural features obtained as a clustering result, allowing comparison with other approaches to improve the search images quality is developed.

New three-stages clustering algorithm based on the classical hierarchical agglomerative algorithm, which unlike the known methods, is adaptive to the characteristic images features when looking at database is designed and developed.

REFERENCES

- R. Melnyk, R. Tushnytskyy, "4-D integral and distributed structural features for image searching and classification", *Journal of Lviv Polytechnic National University* "Computer science and information technologies", vol.650, pp. 61-67, 2009 (in ukrainian).
- [2] R. Melnyk, R. Tushnytskyy, "Image Structure Analysis by 3-stages Clustering", *Intern. Journal of Computing*, vol. 8, issue 2, pp.86-94, 2009.

Software Department, Lviv Polytechnic National University,

S. Bandery Str., 12, Lviv, 79013, UKRAINE,

E-mail: ramelnyk@lp.edu.ua, ruslan4yk@lp.edu.ua