SYNTHESIS AND LUMINESCENT PROPERTIES OF Eu²⁺ AND Ce³⁺ ACTIVATED Li₂SrSiO₄

S.M. Levshov, I.V. Berezovskaya, V.P. Dotsenko

A.V. Bogatsky Physico-Chemical Institute, Ukrainian Academy of Sciences, 86 Lustdorfskaya doroga, 65080 Odessa, Ukraine E-mail: ssclab@ukr.net

Some alkaline-earth silicates, activated with Eu^{2+} and Ce^{3+} ions, are of significant interest as perspective materials for manufacturing white light emitting diodes [1,2]. In this work, Li_2SrSiO_4 doped with Eu^{2+} and Ce^{3+} phosphors were prepared by solid state reaction and sol-gel method. The luminescence spectrum of Eu^{2+} ions in Li_2SrSiO_4 consists of a broad band in the range 500-700 nm with a maximum at 577 nm (see fig. 1). The excitation spectrum of this emission contains two broad bands in the range 300-500 nm with maxima at 310 and 394 nm. It should be noted, that the excitation spectrum shows a strong overlapping with the emission spectrum of a GaN-based diode ($\lambda_{em}=375$ nm).

Although the introduction of Ce^{3+} ions in Li_2SrSiO_4 requires charge compensation, no changes in the excitation and emission spectra of Ce^{3+} ion with the increase of the Ce^{3+} concentration were observed. Most probably, this is a consequence of the structural isolation of Sr^{2+} ions from each other by a three-dimensional network of $[LiO_4]$ and $[SiO_4]$ polyhedra.

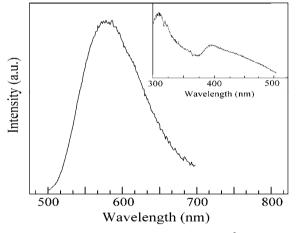


Fig. 1. Emission and excitation spectra of Eu²⁺ ions in Li₂SrSiO₄

Based on the results of luminescent experiments, we discuss the following aspects:

- influence of the preparation method on the luminescent properties of Eu²⁺ and Ce³⁺ in Li₂SrSiO₄;
- microstructure of Eu^{2+} and Ce^{3+} -related centers;
- mechanism for charge compensation of Ce^{3+} ions.

References

- [1] Jang H.S., Jeon D.Y. Appl. Phys. Lett. 90 (2007) 041906/1-3.
- [2] Zhang X., He H., Li Z., Yu T., Zou Z. J. Lumin. 128 (2008) 1876.