ELECTROMAGNETO-OPTICAL EFFECT IN FERRIMAGNETIC/PIEZOELECTRIC STRUCTURE

A.A. Kalenichenko¹, V.E. Koronovskyy¹,

¹ Taras Shevchenko Kiev National University, Kiev, Ukraine E-mail: aakalina@ukr.net

The electro-magneto-optical effect (EMOE) as a magnetoelectric response for ferrimagnetic/piezoelectric (yttrium iron garnets (YIG)/lead zirconate titanate (PZT)) structure by applying an external electrical field was registered using optical polarimetry method. The heart of the method is the registration of the electric-field-induced changes the magneto-optical Faraday rotation of the investigated structure – α_{EMO} [1]. Our experimental setup consists of a high-sensitive laser polarimeter, described in [2]. The sample represented the hybrid structure with stuck together thin magnetostriction (YIG film) and a piezoelectric (PZT) plates. The sample was placed between the optically transparent electrodes which were used to apply an external electric field. The He-Ne laser (λ =0.63 μ m) was used in the experiment. EMOE characterization (α_{EMO}) was carried out as a function of the static electric field E_-

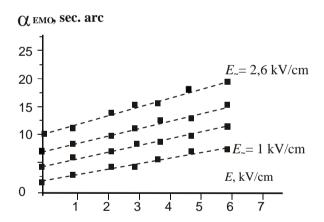


Fig. 1. Dependencies of α_{EMO} from static electric field measured in variable electric field E_{\sim} ($E_{\sim}=1$ kV/cm, $E_{\sim}=1,5$ kV/cm, $E_{\sim}=2$ kV/cm, $E_{\sim}=2.6$ kV/cm).

when magnetic field H = 0. Sample was subjected to a static electric field E_{-} perpendicular to its plane and the electric field dependences (Fig. 1) were obtained for a series of variable electric fields E_{\sim} . A linear dependence of the field shift upon the electric field is evident from Fig. 1. We shown that YIG/PZT structure possess effective EMOE which is a result of magnetoelectric effect in magnetic phase (YIG film) and magnetostriction/piezoeffect. The EMOE for investigated structure is approximately in one order higher than for separate ferrimagnetic phase (YIG film) [3].

References

- [1] B. B. Krichevtsov, R. V. Pisarev, and A. G. Selitskij, JETP Lett. 41, 317 (1985)
- [2] V. E. Koronovskyy, S. M. Ryabchenko, V. F. Kovalenko, Phys. Rev. B. **71**, 172402 (2005)
- [3] V. F. Kovalenko and V. E. Koronovskyy, Ukr. Fiz. Zh. 47, 855 (2002).