
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 6, No. 1, 2021

SYSTEM FOR EFFECTIVE
SMALL BUSINESS SUPPORT

Volodymyr Pavlenko, Oksana Lashko
Lviv Polytechnic National University, 12, Bandery Str, Lviv, 79013, Ukraine.

Author’s e-mail: volodymyr.pavlenko.ki.2017@lpnu.ua
https://doi.org/10.23939/acps2021.01.039

Submitted on 05.05.2021

© Pavlenko V., Lashko O., 2021

Abstract: This paper considers the problem of developing
specialized software designed to support small businesses.
It substantiates the relevance of creating such systems;
architecture has been offered; and the results of development
have been given. For practical use, a specific subject area
has been considered, which allows to clearly understand the
purpose and outcome of the work. These materials can be
used to obtain ready-made solutions during the development
of a software package on this topic. This document can be
considered as an introductory material for the various
stages of the project to develop a system of effective support
of small business.

Index Terms: software development management, system
modeling, business data processing, reconfigurable and
self-configurable computer systems, data analysis, client-
server systems

I. INTRODUCTION
To date, the use of specialized software in business

has become widespread.
Programs designed for employees of companies

have the ability to perform a large number of routine
tasks [1]. However, modern Ukrainian entrepreneurs
have a very limited set of tools to use.

In particular, there are very few programs that can
help maintain a database of goods, revenues and sales,
and in most cases, they are too cumbersome (1C
Accounting) for use by an entrepreneur who owns a
small or medium business. And there are no software
systems that could be used as a single integrated system
to work with any device (phone, PC or browser).

There is also a problem of lack of a special set of
programs (windows, android, web) that could automate
the routine work of modern employees, and help them
qualitatively assess the current state of the enterprise by
considering the calculated accounting, economic analysis
displayed in a convenient form on their work devices.
(telephones, PCs, etc.).

II. TECHNICAL TASK
Create a program for effective support of small

business on the topic of “Auto Parts Store”, which
should support the work with the documents of current
legislation and conveniently organize the working space
of the employee [2].

The software package must be able to work from
many devices simultaneously using a common database.

The speed of the server part must be from 3.000
requests/hour.

The program must meet the minimum requirements
for memory up to 500 MB and disk capacity up to 5 GB.

A. BUSINESS RULES
Every year (01.01.xx 00:00) document numbering

must start from the beginning [3]. (eg “Invoice No. 1”)
The program must have special functionality for

working with documents.
Types of documents [4]:
• Score.
• Sales Invoice.
• Receipt.
• Tax invoices.
• Invoices for return.
• Invoice for receipt.
The required statistics to be provided by the

software include:
• Gross income.
• Top 10 buyers by their costs.

B. MAIN FUNCTIONALITY
The main functionality of the program is based on

user needs. Before developing, it is important to research
the subject of the program in detail.

One of the main tasks of software design is to form
a list of functionalities required by users. The list should
contain all the important functions for working with
data.

It is very important to pay attention to all the needs
of users, because fixing old features or adding new
features is an expensive thing in the later stages. That’s
why programmer should pay attention to them.

Functionality of the program according to the
theme “Auto Parts Store”:

1) Automatic generation of new product code (to
be used as a barcode).

2) Download the supplier's price list.
3) Add, edit and delete documents.
4) Special numbering for each type.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Volodymyr Pavlenko, Oksana Lashko

40

5) Support for different types of sales: invoices,
expense invoices, return invoices and tax invoices.

6) Formation of special forms on the basis of
types of orders (html for printing, xml).

7) Analytics.
8) Inventory.
9) Authorization, registration.
10) Existence of administrators (privileged users).
11) Logging of performed actions by execution

time.
12) Print created html-forms of documents.
13) Printing of labels with barcodes. Must contain

the price and name of the product.
14) Scan generated barcodes.

III. ARCHITECTURE
The small business support system must work

simultaneously with one database on different devices,
so it will be advisable to build an architecture of “client-
server” type [5].

A. CLIENT
The client program consists of modules MainWindow,

TcpClient and many classes of widgets and dialogs
(Fig. 1):

• MainWindow – acts as a control center and is the
main graphical object that will contain elements such as
widgets.

• TcpClient – is responsible for communication
with the server. Is a field of the MainWindow class and is
initialized in its constructor. It implements basic public
methods through which other classes will interact with the
server.

• Widgets – a type of classes that will play a major
functional role.

• Dialogs are a type of class that is responsible for
modular, pop-up windows. Very often these windows play
the role of a dynamic application configurator.

The MainWindow and TcpClient are in a single
instance while there are many dialogs and widgets.

Fig. 1. The structure of the client part. MainWindow and
TcpClient interact with each other and transfer information
between the GUI and the server. Widgets and dialogs are

responsible for interacting with the user

B. SERVER
It is important to have a good understanding of

exactly how the client and server will interact[6]. The
server part consists of 3 main modules (Fig. 2), namely:

• MainSever – the main class responsible for
managing other modules and interacting with clients,

• XmlParser is responsible for working with xml-
data files,

• SQLiteHelper is responsible for working with the
SQLite database and performs basic computational tasks
using the query language.

•

Fig. 2. The structure of the server part. The XmlParser and
SQLiteHelper modules are part of the MainServer, but they are

also completely independent parts of the code and are used
only as separate objects

The SQLiteHelper module interacts with the SQLite
database. SQLite is an open source embedded relational
database.[7] The database has a specially designed
application structure (Fig. 3). Tables are linked through
primary and secondary keys.

Fig. 3. Example of the structure of relationships between tables
in a database. Primary keys are highlighted in bold and

secondary keys in italics.

Each table has its own special purpose (Table 1)
and plays an important role in the whole program. The
database is created immediately the first time you start
the server on a new machine.

Documents have the characteristic ListType, which
is actually an enum type, i.e., an example of a record in
the database: “3” – Document type “3”, which is a “Tax
invoice”. ListNumber is a unique (for the current year

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

System for Effective Small Business Support

41

only) document identifier, according to the Business
Rule on annual numbering updates.

Each list (from the Lists table) is, in fact, a
document whose rules of conduct and types are listed in
the Business Rules.

Relationships between tables can be either to each
other or to one another.

Table 1

DB tables and their purpose

Table name Description

Lists Keep a record of all the “Lists” (bills,
invoices, etc.).

Records Contain all positions of all lists

ProductTypes Contain a list of all possible types of
goods.

Users Keep a record of all users of the program.

UserLogs Keep a list of all users’ activities.

Customers Keep a record of all customers.

Cars Each customer can have multiple cars.

Sellers Keep a record of all sales.

Storage It contains a list of all those present to
“structure” (in store) products.

Each table is related to others in a special way that

implements a certain type of relationship:
• Lists and Records display lists and their records,

respectively. One-to-many connection principle.
• RecordTypes and Records – “one-many”.
• Users and UserLogs – “one-many”.
• Lists and Customers – “many-one”. One list can

have only one buyer (seller).
• RecordTypes and Storage – “one-one”.
• Customers and Cars – “one-many”.

IV. DESIGNING

Software design begins during or immediately after
the completion of architecture development.

Once the requirements are established, the design
of the software can be established in a software design
document. This involves a preliminary or high-level design
of the main modules with an overall picture (such as a
block diagram) of how the parts fit together.

The language, operating system, and hardware
components should all be known at this time.

Then a detailed or low-level design is created,
perhaps with prototyping as proof-of-concept or to firm
up requirements.

One of the design stages can be considered detailed
design, which is carried out by building class diagrams
separately for the client (Fig. 4) and server (Fig. 5).
During the detailed design, it is important to plan the
connections between the classes.

The creation of business programs is more than a
way to view or automate your information process.

A. DETAILED DESIGN
In particular, relationships such as aggregation and

composition should be indicated in the diagram and, to
improve perception, they should be summed up in the
appropriate field of the class to which they are associated.
(Fig. 5).

Fig. 4. Part of the client class diagram. The diagram shows
 the main class MainWindow and its connections

 to Load_supplier_invoice (dialog) and Inventory (widget)

Fig. 5. Part of the server class diagram. The relationship

between the XmlParser and MainServer classes. In this case,
the first class is a field of the second class, which is an example

of aggregation

The class diagrams are shown from the field and
the methods of the server modules, from the program
code, the objects of the type of classes.

The diagram depicts a large amount of low-root
information, which is extremely useful for software
developers.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Volodymyr Pavlenko, Oksana Lashko

42

The final stage of design in this project is the
choice of how the client and server interact. As a basis
for client-server interaction, it was decided to choose the
most convenient way to understand “Request-Response”.
The server must respond a special message to each
request from client.

In most cases, the server will be required to
acknowledge receipt or processing of information. To
log all possible types of commands, a special “request-
response” table (Table 3) has been created, which
contains all types (Table 2) of requests to the server and
responses to them for the client.

Each type of team is specially designed to minimize
their overall number. This is done to provide fast
encoding and effective further code support.

Table 2

All types of commands

Commands

Add

Del

Edit

Get

Login

Uniq

Table 3

An example of each type of command

GUI class
Request

(client:[UID]:[command][:par
ams])

Response

New_cust
omer

client:[UID]:add:Customers:[n
ame]:[iban]:[bank]:[edrpoy]:[i
pn]:[address]:[number]:[email]

server:[bool]

Customers client:[UID]:del:Customers:ID
_Customer=[ID_Customer] server:[bool]

New_cust
omer

client:[UID]:edit:Customers:I
D_Customer=[ID_User]:["col
umn=value" / delimiter = "|"]

server:[bool]

Customer_
info

client:[UID]:get:Customer_inf
o:ID_Customer=[ID_Custome

r]

server:[Lists.Dat
eTime + Records

by
ID_Customer]

Authorizat
ion

client:[UID]:login:[login]:[pas
sword]

server:[UID or –
1]:[isAdmin]

Load_supp
lier_priceli

st

client:[UID]:uniq:addProductT
ypes:[supplier]:[2000 or less

records]
server:[bool]

It was decided to use the “:” symbol as a delimiter.

By the way, choosing a different one or even using a
group of characters is not a problem.

The table gives examples of each of the types of the
commands in the appropriate order. The table contains:
the name of the class, client’s requests and server’s
responds.

B. CODING
After the detailed design, the coding stage begins,

which is the conversion of the developed diagrams and
algorithms into code in the selected programming language.

During this stage, the main method of software
testing is selected and all items of the created technical
task are implemented.

It was decided to implement the user interface of
the server part in the form of a command line interface
(CLI), because the end user will not in any way configure
the server directly. It is assumed that any required settings
of the server program will be performed using the graphical
interface of the client program.

Qt framework provides a good library for developing
CLI applications [8]. In particular, they allow to work
directly with stdout and stderr streams. This allows to
easily log information.

The information that will be output by the server
program in stdout will be exclusively working information
about:

• Starting the server,
• Network server address,
• Information about new connected client programs,
• Information about disabled client programs,
• Errors at work.
It was decided to implement the user interface

(Fig. 6) with the client part using Qt GUI technologies
[9]. The GUI model will be based on the terms of
reference.

Fig. 6. Customer interface structure diagram. The figure shows
all the transitions between different parts of the graphical

interface. There are 2 types of possible graphic classes that
will be called from the main window of the program: widget

(rectangle), dialog (ellipse).

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

System for Effective Small Business Support

43

The main control is QMenuBar from the Qt GUI
package. From this element the user will call the main
modules of the system.

Each module is a separate QWidget that runs in the
QTabWidget as a tab.

Interface structure (Fig. 6).
The interface is developed in Qt Creator [10].

C. TESTING

The testing phase (Fig. 7) is a fairly broad point and
covers most of the other development stages.

Also, this stage may also cover the future phase of
maintenance, i.e., after commissioning, when the tester is
an employee of the enterprise.

The program is designed for the Ukrainian market
so you can see the Ukrainian localization.

Fig. 7. Testing of work with the list of documents.
You can see 2 records with end customers.

Each document has a list of things (Fig. 8).
Therefore, double-click to edit the mode of a specific
document.

During the main stage of testing, the main validation
of the software for compliance with the technical task
was performed. A lot of information was obtained that
can be compared with the analogues of the system on the
market.

Fig. 8. Testing work with list of goods from the selected doc.
List belongs to end customer and seller Olexander

Checking the correctness of the database update of
all available product types (Fig. 9).

After the completion of the testing and commis-
sioning phase, the created system of effective small
business support is a full-fledged software product and
can be compared with other analogues. Let's single out
architectural advantages:

Fig. 9. Testing the work of updating the database
of all types of goods. You should enter the path to xml-doc

• The developed system in comparison with the
analogue of “1C: Enterprise” has only the necessary
functionality for a small business employee. Due to the fact
that the number of functions is much smaller, the
maintenance of this software is cheaper.

• Unlike, for example, the analogue "Athena", the
developed software supports multi-device operation and has
sufficient functionality to work effectively with routine
tasks.

Also, hardware requirements play an important role
in such systems. For example, 1C: Enterprise has minimum
requirements for hard disk (40 GB) and OP (1 GB). If
the OP is less, the program will run extremely slowly.
That is why the recommended requirements for 1C are at
least 2 GB. Compared to the system developed in this
bachelor's thesis, the difference is significant, because
the created developed program uses only 500 MB of
RAM.

Given the above reasons, it can be argued that the
developed system in this project provides more efficient
operations in a typical, small business environment.

V. MAINTENANCE

Maintenance is an important stage in the life cycle
of any high-quality software that works with time-varying
requirements.

If the product developer no longer supports the
software installed by the client, the transition to a new
one is problematic, and the support of the existing system is
too expensive.

During each stage of software development, the
developer must constantly check his work for errors and
correct them in advance.

If there is a technical feasibility, reengineering is
carried out – that is, the creation of a redesigned version
of the old software taking into account the new
requirements. Migration is gradual to avoid risks.

Preventative Software Maintenance helps to make
changes and adaptations to your software so that it can
work for a longer period of time. The focus of the type
of maintenance is to prevent the deterioration of your
software as it continues to adapt and change. These
services can include optimizing code and updating
documentation as needed.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Volodymyr Pavlenko, Oksana Lashko

44

Taking into account the reasons above, and also
taking into account the type of software developed, it
was decided to choose preventive software maintenance.

Preventative software maintenance helps to reduce
the risk associated with operating software for a long
time, helping it to become more stable, understandable,
and maintainable.

For all businesses and organizations, software
maintenance is an essential part of the software
development lifecycle. This isn’t something that one can
skip or avoid.

It is absolutely necessary for the success of your
software and any evolution into the future.

It is important to know that maintenance needs to
go much further than fixing issues or bugs – that is only
one steps of the software maintenance process.

Updating software environments, reducing
deterioration, and enhancing what is already there to
help satisfy the needs of all users are also included in the
software maintenance examples.

In our application project with the theme “Auto
Parts Store” we developed a program to support small
businesses working with the legislation of Ukraine,
which is constantly frequently.

As a result, the program needs to be frequently
updated and modified.

The main most frequently changing parts of the
software are modules that work with forms for printing
documents. For other changes in the legislation, editing
through the graphical interface of the program is already
provided, which greatly facilitates maintenance.

VI. CONCLUSION

Therefore, this document discusses the main points
of the process of developing specialized software to
support small businesses.

During the time allotted for the implementation of
the project, the way to develop business support systems
was studied and performed. The work was carried out
according to the numerical framework specified in the
calendar plan.

This paper considers the main points of the process
of developing specialized software to support small
businesses. In particular, the main tasks were performed:

• requirements were received from end users and a
technical task was created on their basis;

• the selection of optimal means for creating this
type of software;

• developed software architecture;

•

• detailed design and coding;
• the created software was tested, namely its

validation for compliance with the initial requirements.
A full-fledged software system for effective support

of small business on the subject of "Auto Parts Store"
was created, which supports the work with the documents
of current legislation and conveniently organizes the
working space of the enterprise. The created system has
the following architectural advantages

• The resulting software has the ability to work
from many devices.

• The program meets the requirements for memory
and has a size of up to 500 MB.

• The disk size is less than 5 GB. The speed of the
server part exceeds 3000 requests / hour.

• Due to the fact that the number of functions is
much smaller, the maintenance of this software is cheaper.

After commissioning by end users, a sufficient
number of positive feedback was received, which confirms
the criterion of project success.

The developed software is effective when used in
small enterprises, as it covers the main disadvantages of
analogues in the market of business support programs:

• redundancy and high cost of maintenance,
• truncated functionality, which is not enough to

effectively perform certain tasks
• inability to work with multiple devices

simultaneously.

REFERENCES
[1] Spinellis, D., (2016). Managing a Software Business. IEEE

Software, pp. 4–7.
[2] Voas, J., (2004). Software Engineering's Role in Business. IEEE

Software, pp. 26–27.
[3] Kluza, K. and Nalepa, G., (2017). A method for generation and

design of business processes with business rules. Information
and Software Technology, pp. 123–141

[4] Knowledge-Based Systems, (1988). Knowledge-based decision
support in business: issues and solutions.

[5] Refactoring.guru. (2021). Design Patterns. Available at:
<https://refactoring.guru/design-patterns> (Accessed 30 May
2021).

[6] Zhu, H., (2005). Software design methodology. Oxford: Elsevier
Butterworth-Heinemann.

[7] Allen, G. and Owens, M., (2010). The definitive guide to SQLite.
New York, NY: Apress. p. 24

[8] Qt Project. (2021). Qt Examples And Tutorials. Available at:
<https://doc.qt.io/qt-5/qtexamplesandtutorials.html> (Accessed:
30 May 2021).

[9] Rischpater, R., (2013). Application development with Qt
Creator. Birmingham: Packt Publ.

[10] Qt Project. Qt Creator. (2021). (Version 4.12).
[11] Thankappan, V., (1980). Small Business Observations,

American Journal of Small Business. pp.1–2.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 6, Num. 1, 2021

Pavlenko Volodymyr is a Junior
C++ Qt Software developer. Nowadays
he works as a freelancer.

From 2013 to 2017, he completed
his secondary education at the Talne
Lyceum of Mathematics and Econo-
mics.

After that he entered Lviv Poly-
technic National University, where from
2017 to 2021 he received a bachelor's
degree in “Computer Engineering”.

Oksana Lashko was born in
1976 in Lviv, Ukraine. She received
the B.S. and M.S. degree in Lviv
Polytechnic State University, Lviv, in
1999. From 1999 to 2002, she was
postgraduate at Lviv Polytechnic
National University. Since 2007, she
is a senior lecturer at the Computer
Engineering Department of Lviv
Polytechnic National University.

Her research interests include the development of signal
processing tools at the algorithmic and software levels,
research of image encoding and compression problems.

System for Effective Small Business Support 45

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

