OPTICAL SPECTROSCOPY OF Nd³⁺ LUMINESCENCE CENTRES IN THE Sr₄B₁₄O₂₅:Nd CRYSTAL

<u>B.V.Padlyak^{1,2}</u>, W. Ryba-Romanowski³, R. Lisiecki³, Yu.S. Oseledchik⁴, A.L. Prosvirnin⁴, D.P. Kudryavtcev⁴, N.V. Svitanko⁴

 ¹Institute of Physical Optics, 23 Dragomanov Str., 79-005 Lviv, Ukraine
²University of Zielona Góra, Institute of Physics, 4a Szafrana Str., 65-516 Zielona Góra, Poland
³Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, 2 Okólna Str., 50-422 Wrocław, Poland
⁴Zaporizhya State Engineering Academy, 226 Lenin Ave., 69-006 Zaporizhya, Ukraine E-mail: B.Padlyak@proton.if.uz.zgora.pl

The new borate crystals with $Sr_4B_{14}O_{25}$:Nd (Nd₂O₃ : SrO = 1 : 100) composition were obtained by Czochralski technique according to technology, described in [1]. By optical and electron paramagnetic resonance (EPR) spectroscopy it was shown, that the Nd impurity is incorporated into the $Sr_4B_{14}O_{25}$ structure as Nd³⁺ ions.

Optical absorption, emission and luminescence kinetics of Nd³⁺ centres in the borate crystal with Sr₄B₁₄O₂₅:Nd composition are investigated and analysed in comparison with Nd³⁺ optical spectra in the glass with same composition [2] and other borate crystals. Oscillator strengths (P_{theor} and P_{exp}) of observed absorption transitions and phenomenological intensity parameters Ω_t ($\Omega_2=1.59 \cdot 10^{-20} \text{ cm}^2$, $\Omega_4 = 2.06 \cdot 10^{-20} \text{ cm}^2$, and $\Omega_6 = 2.28 \cdot 10^{-20} \text{ cm}^2$) were calculated on the basis of standard Judd-Ofelt theory. Using obtained Ω_t parameters, the radiative transitions rates (W_r), branching ratios (β) and radiative lifetime (τ_{rad}) for emission from the ${}^4F_{3/2}$ level of Nd³⁺ centres in the Sr₄B₁₄O₂₅ crystal have been calculated. Measured lifetime values ($\tau_{exp} = 105$ and 93 µs at T = 10 and 300 K, respectively) are compared with those calculated ($\tau_{rad} = 331 \mu s$). The quantum efficiency for Nd³⁺ centres from ${}^4F_{3/2}$ emitting level in the Sr₄B₁₄O₂₅:Nd crystal is estimated ($\eta \cong 32 \%$).

Incorporation peculiarities and local structure of the Nd^{3+} luminescence centres in the $Sr_4B_{14}O_{25}$ crystal and corresponding glass with $4SrO-7B_2O_3$ composition are considered on the basis of published X-ray diffraction data [3] and obtained results of optical spectroscopy.

References

- [1] D.P. Kudryavtcev, Yu.S. Oseledchik, A.L. Prosvirnin, N.V. Svitanko, J. Cryst. Growth, 254 (2003) 456-460.
- [2] D.P. Kudryavtcev, Yu.S. Oseledchik, A.L. Prosvirnin, N.V. Svitanko, Ukr. J. Phys. Opt. 4 (2003) 83-89.
- [3] A.E. Lapshin, E.O. Litovchik, I.G. Polyakova, Yu.F. Shepelev, Rus. J. Inorgan. Chem. 52 (2007) 839-843.