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Abstract 

The spectral theory is used to explain the enhanced transmission phenomenon. Eige-

noscillations of corresponding waveguide and periodic open resonators have been stu-

died. Their influence on frequency response is demonstrated for various structures. It 

has been found that the origin of this recently discovered effect is in the existence of the 

eigenoscillations of the interface between the free half-space and the metal half-space 

perforated with double-periodic set of channels or the eigenoscillations of the waveguide 

plane junction. 
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1. HISTORY AND STATEMENT OF A PROBLEM 

In 1998 unexpectedly high level of light transmission 

through a thin metal screen perforated by holes with 

diameters much smaller than the wavelength of the 

light was revealed in the first time [1]. After that a lot 

of publications about explanation of this effect, hunt for 

new structures where it is in existence, and its practical 

applications appeared. 

Initially this anomalous phenomenon was discovered 

in the optic range where metal conductivity is far from 

perfect one [1]. So the existence of the enhanced 

transmission was explained by finite metal conductivity 

and the excitation of surface plasmon polaritons. How-

ever, lately this effect was demonstrated in the micro-

wave range where the metal is almost perfect conductor 

and the theory based on the surface plasmon polaritons 

was no longer valid [2]. Scientists paid their attention 

to periodicity of the screens and used the theory of sur-

face waves [3, 4]. It let to explain the cause of appear-

ance of the extraordinary transmission without 

dependence on the screen material parameters. Fur-

thermore, it was applicable in the case of the perfect 

conductivity as well. Nevertheless, recently the en-

hanced transmission was discovered for waveguide 

irises with below-cutoff holes [5, 6], i.e. for the struc-

tures no supported the surface waves. A new explana-

tion is required. 

Lately some theories that interpret the nature of the 

enhanced transmission phenomenon by means of mi-

crowave engineering concepts only arose. The circuit 

theory is used in [6]. The authors of given publication 

treat eigenoscillations of periodic or waveguide open 

resonators as an origin of all resonance effects [7]. This 

interpretation is based on classical ideas of electromag-

netics. So its usage emphasizes the fundamental nature 

of the extraordinary transmission phenomenon. 

The eigenoscillations theory (the spectral theory) 

was used by the authors for analysis of waveguide iris-

es with some resonance slots and screens with several 

resonance slots on a periodic cell. It let to explain some 

specific effects [8, 9]. This conception was applied to 

structures with below-cutoff holes as well [10, 11]. 

Here we are going to summarize our previous results. 

First of all, importance of considered phenomenon 

consists in expansion of our knowledges about main 

resonance effects. Nevertheless, some practical applica-

tions of the enhanced transmission appeared. There are 

the publications concerned new metamaterials [12] and 

designing frequency selective surfaces [13], for in-

stance. 

In this paper we will consider the nature of the en-

hanced transmission, its dependence on geometry pa-

rameters including structure of the screen cell and a 

number of the holes, and will describe influence of a 

single eigenoscillation and sets of them that lead to 

arise new resonance effects, in particular the pairs of 

“resonance-antiresonance”. 

2. THE REFLECTION FROM PERFORATED 

METAL SURFACES  

Let us pay our attention to the simplest structure that 

supports considered effect. It is a plane junction of two 

uniform waveguides (one of them is the single-mode 

one and another is below-cutoff one) or an interface 

between the free space and a metal half-space perfo-
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rated with below-cutoff holes. Consider the excitation 

from the single-mode waveguide for the plane junction 

and normal incidence of the plane wave from the free 

space for the periodic structure. It turned out, that there 

is abrupt changing of the phase of the reflected mode in 

the one-mode (single-mode) band near a cutoff fre-

quency of the first highest modes for all irregularities 

presented in Fig. 1. From this point on the “single-

mode band” means a range between cutoff frequencies 

of the incident mode and the first excited highest mode. 

The normalized frequency  /0a  is used for gene-

rality. Naturally the single-mode band boundaries de-

pend on the symmetry properties of the incident mode 

and corresponding irregularity. 

To understand a reason of sudden phase turn let us 

mark properties that are common for all structures. 

First of all, the incident mode is a mode with 0zE . 

As to structures shown in Fig.1 (from bottom to top) 

the one-mode bands are bounded by the cutoff frequen-

cies of 

11TM(E) , 
11TM , Floquet

10TM  modes. Hence 

changing of the phase takes place near a cutoff fre-

quency of a TM mode. In the course of computational 

investigations it was determined that if the first excited 

highest mode is of the TE type, such phase behavior of 

the reflection coefficient had not been observed as well 

as in the case of incidence of the TM mode. 

The phase rotation on 360º in the narrow frequency 

band is typical to the reflection coefficient from a reso-

nant load on the transmission line end. Indirectly it 

points on the existence of an eigenoscillation. Excita-

tion of this eigenoscillation leads to the rotation of the 

reflected mode phase. 

It is important to emphasize that in our case the re-

sonator is really the plane irregularity (it does not have 

any volume!) loaded on the regular channels (the wa-

veguides or the free space). Until recently the investi-

gation of the eigonoscillations of the waveguide or 

periodic open resonators was carried out for 2D scalar 

problems on 1D periodic screens or corresponding wa-

veguide irregularities. Y. K. Sirenko and L. A. Rud 

proved that similar structures of “zero-size” volume 

have the eigenoscillations with real eigenfrequencies 

only. These frequencies are equal to cutoff frequencies 

of the modes of the regular channels [14]. So the ques-

tion about the eigenoscillations of the 2D plane junc-

tions has not been considered yet. 

There is no way to realize such analytical evaluation 

for the vector problems of electromagnetics and it is 

necessary to use exact numerical approaches to hunt the 

eigenoscillations of such open structures. 

Let us write the electromagnetic fields in the regular 

channels as series on their eigenmodes. By the mode 

matching technique we obtain an equation to calculate 

the resonator eigenfrequencies: 0))(det( A . The 

solutions of the homogeneous matrix equation 

0)( XA   in the found eigenfrequencies give us a 

possibility to reconstruct field pattern of the eigenoscil-

lations. Evidently an accuracy of this obtained solution 

depends on a truncation order of the matrix )(A . It is  

regulated by a parameter cutf  that is the highest limit of 

the cutoff frequencies of modes included in calculation. 

To obtain qualitatively correct physical results it is 

enough to choose cutf  so that at least three modes in-

side the below-cutoff waveguides are taken into ac-

count. 

The complex eigenfrequencies were really found for 

all structures plotted in Fig. 1. Their real parts are 

closed to the frequencies corresponding to change of 

the phase of the reflection coefficient. The recon-

structed field patterns of the eigenoscillations confirm 

the main role of the first highest TM modes in forming 

of the oscillations. The field lines of electrical fields of 

the eigenoscillations organize something similar to 

“hats” under the open holes. 

Consequently, we can conclude that the eigenoscilla-

tions of high Q-factor with complex eigenfrequencies 

located near the cutoff frequency of the first highest 

TM mode exist in open resonators with “zero-size” 

volume that are perfect conductor reflectors with be-

low-cutoff holes loaded by regular channels. Excitation 

of these eigenoscillations leads to abrupt 360º changing 

of the phase of reflection coefficient. 

Number of the eigenoscillations depends on the di-

mensions of the regular channels, their symmetries and 

symmetry of the whole structure. Table presents several 

examples of the plane junctions of two circular wave-

guides with the ratio of their radii as 3:10. The exam-

 

Fig. 1.  The reflection from perforated metal half-

space and waveguide plane junctions near cu-

toff frequency of the first highest TM mode. 

Across: the frequency parameter normalized 

to cutoff frequency of the TM mode. Metal 

half-space: 1/ 00 ab , 15.0/ 0 ar ; circular 

waveguides: 3.0/ 0 ar ; rectangular wave-

guides: 43.0/ 00 ab , 13.0// 0101  abaa .  
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ples illustrate that decentralization of the plane junction 

leads to decreasing of the single mode band and display 

of new eigenocsillation near the cutoff  

point of 
01TM . Hence the phase of the reflected verti-

cally polarized 
11TE  mode rotates on a lower frequen-

cy. We need to emphasize that this phenomenon also 

exists for an incident higher TE mode if the mode has 

the lowest cutoff frequency in corresponding mode 

symmetry group. The phase changing of the 
21TE  

mode takes place before the cutoff point of 
21TM  in 

the case of an axial-symmetric junction, for instance. 

Furthermore, the symmetry field properties of the cir-

cular waveguide modes let conclude that if the 
nmTE  

mode ( 0n ) is incident on the axial-symmetric junc-

tion, the phase changing of the reflected mode will ap-

pear near the cutoff frequency of 
nmTM  one. 

The modification of the objects dimensions gives us 

a possibility to control the eigenfrequencies to some 

extent. Fig. 2 demonstrates by the example of a junc-

tion of two rectangular waveguides that the width in-

creasing of the smaller one leads to the movement of 

the eigenfrequency (as well as the phase changing fre-

quency) to the low frequency range, whereas the eigen-

frequency Q-factor (as well as the slope of the phase 

response) decreases. In the limit case of the E-plan step 

of the rectangular waveguide cross-section the eigen-

frequency tends to the cutoff point of the 

10TE  mode. 

Due to small dimensions the electromagnetic field 

evanesces inside the output channel. It is evidently that 

the channel shorting on some distance from the junc-

tion does not tell on the result. It slightly changes the 

phase changing frequency only. Hence not only the 

perforated metal half-spaces or the waveguide plane 

junctions but also the cavities in the metal planes or the 

waveguide plugs are able to provide resonance beha-

vior of the reflected field. It is possible they can be 

used as elements of special resonators based on the 

eigenos- 

cillations of the plane junctions or the “open aperture” 

screens. 

3. ENHANCED TRANSMISSION AS THE 

RESULT OF COMMON EXCITATION OF 

PAIRED EIGENOSCILLATIONS 

Now let us consider more complicated structures 

such as irises with below-cutoff holes and double peri-

odic perforated metal screens. Due to longitudinal 

symmetry of these structures, we can suppose existence 

of pairs of the eigenoscillations that are formed by pre-

vious ones due to electromagnetic interaction by be-

low-cutoff channels and have PMW or PEW in the 

transversal plane of the screen or iris symmetry. Using 

corresponding numerical model we have found these 

eigenoscillations with complex-valued eigenfrequen-

cies for a wide range of popular structures. The sim-

plest example of field patterns are plotted in Fig. 3. As 

we see, the electric fields are mainly concentrated out 

of the holes and they are relatively weak within the 

regular waveguide channels. 

Excitation of the revealed eigenoscillations by the 

incident field leads to appearance of the pair of the total 

transmission resonances on the frequency response 

(Fig. 4). This pair of the resonances is under discussion 

Table.  Eigenoscillations of plane junction of two 

circular waveguides. 

Structure & 

symmetry 
One-mode band Eigenfrequency,   

 

 
 60982.0;29303.0

;
1111 TMTE
 

 4105.260817.0  i  

 

 
 81736.0;4861.0

;
2121 TMTE
 

 6108.181713.0  i  

 

 
 38273.0;29303.0

;
0111 TMTE
 

 6107.338271.0  i  

 

Fig. 2.  Movement of eigenoscillation frequency via 

increase of width of smaller waveguide.  

 

 

Fig. 3.  Electrical field patterns of eigenoscillations of 

screen with narrow holes 
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by scientific world last ten years.  

If we know the eigenoscillations, we can not only 

predict existence of these resonances. There is a possi-

bility to reconstruct whole frequency curve using the 

approximation formula [7]. It contains the known set of  

the eigenfrequencies only. The comparison of numeri-

cal results obtained by MMT and the frequency re-

sponse reconstruction according this formula is shown 

in Fig. 5. 

The approximation formula has done it possible to 

study analytically some peculiarities of the frequency 

response. It has become clear that three qualitatively 

different situations depended on the irregularity thick-

ness are possible: 

1) there are two points of total transmission; 

2) if the thickness increases, then both eigenfrequen-

cies come to each other in exponential manner, ap-

proaching simultaneously a fixed complex point. Then 

there is the only one point of total transmission; 

3) the resonance gradually vanishes with the further 

thickness growth. 

The movement of the eigenfrequencies in the com-

plex plane when the hole aperture increases from zero 

to the maximum size (Fig. 6) gives general idea about a 

possible frequency response of the irregularity. The 

complex-value eigenfrequency of the eigenoscillation 

with PMW starts from the branch point at the first 

highest TM mode cutoff frequency and moves to the 

lower frequencies with increasing   . The correspond-

ing resonance in the reflection coefficient moves to the  

lower frequencies gradually loosing its Q-factor.  

This is to emphasize when the hole becomes reso-

nant one (as itself!), our eigenoscillation corresponds to 

the well-known “half-lambda” resonance of the slotted 

iris or perforated screen. The eigenoscillation field 

changes its structure in this band of geometrical para-

meters. It “gradually” enters into the slot with increas-

ing of the slot dimensions. For the resonant holes the 

field maximum is positioned within the hole. Thus this 

eigenoscillation has direct relation to the well-known 

phenomenon of the total transmission through the reso-

nant slots.  

Unlike this, the complex frequency of another  

eigenoscillation does not essentially depend on the slot 

width. Its field pattern is also stable and is concentrated 

 

Fig.  4.  Frequency response of the vertically pola-

rized   
11TE  mode. The positions of two 

complex   eigenfrequencies are marked by 

the diamonds. 

 

a)  b) 

Fig. 6.  Frequency change of the eigenoscillations with PMW (a) and PEW (b) in the longitudinal plane of 

symmetry via the slot dimension increasing. Hatched domain corresponds to resonant slots. 

 

Fig. 5.  Comparison of numerical results with the 

reconstruction of the plane wave transmis-

sion coefficient with the aid of two eigen-

frequencies in the case of the screen 

perforated by circular holes 

( 83.0/ 00 ab  mm, 22.0/ 0 ar  mm). 
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out the hole.  

Changing the slot location within a waveguide cross 

section gives us possibility to change the resonance 

frequencies as in the case of plane junctions. Unfortu-

nately it is not possible by moving the slot location 

within a screen cell, because the cutoff frequency of the 

first highest Floquet

10TM  mode is formed only by the cell 

period and don‟t depend on location of the slot. 

So, there is no wonder in existence of the “enhanced 

transmission” from the point of view of number of re-

sonances, their frequency locations and Q-factors, mov-

ing with geometry changing, their confluence when the 

screen or iris thickness increases, and other characteris-

tic features of the frequency response topology as it is 

practically the same as well known “half-lambda re-

sonance”, but appeared when apertures are below-

cutoff ones (see [10, 11] for details). The essential in-

fluence of the ohmic loss at optical frequency range 

leads, as usually, to smoothing the frequency spikes, to 

their frequency shifts and so on.  

4. PLURALITY OF THE SCREEN MODELS, 

IMPLICIT EIGENOSCILLATIONS, SCREEN 

WITH PERIODICAL PERTURBATIONS AND 

NEW TYPES OF ENHANCED TRANSMISSION 

In contrast to the waveguide problems the situation 

in the theory of periodic structures has some ambiguity. 

Since we can use in calculation any cell that concludes 

several identical elementary periods, if we consider a 

periodic screen. Then together with eigenoscillations 

corresponding to the elementary cell some other eige-

noscillations appear. They are caused by the larger pe-

riod and located on the real axis.  

Naturally, for any computational model the scatter-

ing problem will have only one solution that don not 

react to these implicit eigenoscillations. Their influence 

will become apparent if there are some periodic pertur-

bations of the screen increased its elementary cell. 

Then some of the implicit eigenoscillations will have 

got complex eigenfrequencies. It indicates radiation 

losses in the free space. Hence excitation of these eige-

noscillations will have an effect on the frequency re-

sponse by arising additional resonance picks. The 

resonances will be located in lower frequencies and 

their Q-factors will be determined by symmetry proper-

ties of the screen, the incident field and the eigenosclla-

tions. If the perturbation is small, the “old” resonance 

effects do not practically change and we can tell about 

new enhanced transmission resonances located in mul-

tiple wave-lengths. Since main enhanced transmission 

resonance has got smaller Q-factor its influence leads 

to the appearance not only the new total transmission 

resonances but also the total reflection ones. 

To illustrate the influence of these new eigenoscilla-

tions on the forming of the resonance responses let us 

consider the simplest example of a screen with two 

holes within a periodic cell (Fig. 7). We suppose the 

incidence of the Floquet

00TM  mode polarized along the 

largest dimension of the cell and infinitesimal thickness 

of the screen. The latter lets consider only the eigenos-

cillations with PMW in the transversal symmetry plane 

of the screen. Because of the rest of the eigenoscilla- 

tions have got real eigenfrequencies and don not influ-

 

a) 

 

b) 

 

c) 

Fig. 7.  Frequency response of the 
Floquet

00TM  for sev-

eral screens with periods increased by mod-

ification of element perturbation (a), space 

perturbation (b), both perturbation togeth-

er(c). ( 1396.001 aa , 1431.002 aa ). 
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ence on the frequency response. 

Initially, in the case of uniformly distributed two 

equal holes the screen can be considered as a single-

element one with a hole within a small period 0a , and 

its single-mode band  1;0 . The enhanced transmis-

sion is observed slightly below 1 . With changing 

the dimensions of one of the holes (or element pertur-

bation) we increase the cell width twice and decrease 

one mode band to  5.0;0 . As it can be observed at 

the vicinity of 5.0 the frequency response acquires 

a new resonance of total transmission and the old en-

hanced transmission resonance is slightly changed (Fig. 

7a). Furthermore in this case a couple of “resonance-

antiresonance” appears.  

The embedding of the other kind of perturbation 

with changing the distance between the holes (or space 

perturbation) results in appearance new enhanced 

transmission resonance too. (Fig. 7b). However there is 

not the total reflection resonance as in previous exam-

ple. 

As it is easy to see at the space perturbation the 

structure symmetry in relation to AA’ is saved, and at 

the element perturbation the structure symmetry is vi-

olated. In our opinion absence of the symmetry lets 

interaction between the eigenoscillations with different 

“quasi-symmetry” properties and we see additional 

reflection resonances. 

At last in the case of simultaneous space and ele-

ment perturbations (Fig. 7c) two new resonances of the 

total transmission and the total reflection between them 

appeared on the frequency response near 5.0 . The 

reason of such behavior is excitation a pair of the eige-

noscillations with complex frequencies and different 

symmetry properties in relation to AA’, whereas in the 

previous examples one of the oscillations had got a real 

eigenfrequency. Existence of the pair resonances of 

total transmission corresponds to the theory published 

in [8, 9] for structures with several resonance holes in 

full manner. It again emphasizes the fundamental cha-

racter of the enhanced transmission phenomenon and 

common nature of all resonance effects. 
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