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Abstract: The paper deals with an approximate 

analytical solution of a three-dimensional problem of the 
theory of electromagnetic field, which is based on the 
use of asymptotic expansion under the condition of a 
strong skin-effect for a field produced by a closed 
current-carrying loop located near a conducting half-
space. It is noted that each member of an asymptotic 
series is determined with an error, the value of which 
depends on the value of a small parameter and increases 
with increasing the index of series member resulting in 
limited number of its members. It is identified that when 
using the method of asymptotic expansion, the number 
of members of a series can be limited by the relatively 
small number, which is determined by the specified 
limits of the allowable accuracy of calculation (relative 
error). The authors determine the optimal number of 
asymptotic series members, and indicate that calculation 
accuracy depends on the value of a small parameter, and 
for a specific conducting material it depends on the field 
frequency and the minimum distance from external field 
sources to a conducting body. 

Key words: analytical and asymptotic calculation 
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1. Introduction 
Despite the widespread use of numerical methods 

for calculating three-dimensional electromagnetic fields, 
analytical or numerical-analytical approaches, which allow 
the most significant characteristics of electromagnetic 
systems to be taken into account, remain effective. 
Analytical, accurate and approximate methods of calculating 
an alternating electromagnetic field are used in solving 
inverse problems of the theory of electromagnetic field and 
optimization of electromagnetic systems. For such 
applications, the difficulties associated with a significant 
increase in the volume of calculations and the simultaneous 
need to ensure high accuracy of field calculation, for 
example, in the problems of extending the field from the 
surface [1–3]. 

The need to solve the inverse problems of field 
theory and optimize the geometry of electromagnetic 
systems arises in the development of devices for 
electrical engineering equipment. They occur in the 
creation of technological devices for heat treatment of 

metals [4], magnetic pulse treatment of metal products 
[5], treatment of metallic materials with electric current 
and high intensity electromagnetic field [6].  

In the above examples, in in electroconductive 
media of the elements of devices that are affected by the 
electromagnetic field, there is a strong skin-effect when 
the field and the induced current exist in a thin surface 
layer of the conducting body [7]. In this case, one 
usually uses a mathematical model, in which the body of 
real shape is locally replaced by an electroconducting 
half-space, and the external field is produced by sources 
located outside the body in the dielectric region. The 
application of the analytical solution of such a problem, 
obtained in [8, 9], in the general formulation is also 
associated with rather cumbersome calculations. 
Therefore, even in this case, the development and 
implementation of approximate methods for calculating 
fields in specific applications are relevant. 

An effective approach for determining three-dimensional 
electromagnetic fields using the approximate asymptotic 
method in [10–12] is used to solve inverse problems to 
find the spatial geometry of field inductors in the field of 
heat treatment using induction heating of moving 
metal strips The electromagnetic field is considered 
in the case of a strong skin-effect in the extended 
interpretation, when a strong skin-effect means not only 
a small value of the depth of penetration of the field into 
the conductive medium compared to body size, but also 
the fact that the depth of field penetration is a small 
value compared to the characteristic dimensions  
in the entire electromagnetic system, including the 
dimensions of the current-carrying loop and the distance 
from the loop to the media dividing boundary. The ratio 
of penetration depth to the characteristic dimensions of 
electromagnetic system is believed to be a small 
parameter, but not necessarily to tend to zero. 

When obtaining the geometry of the inductors for 
induction heating of moving strips, calculations were 
performed for a specific number of members in the 
asymptotic series, and the accuracy of the results was 
checked separately. However, in the method of 
asymptotic expansion, the number of members of the 
series is limited not only by the required accuracy of the 
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calculation. The error has a lower limit, which is 
determined by the value of a small parameter. Thus 
excess of the certain number of series members can lead 
to growth of the general error of calculation. 

The aim of this work is to analyze the error 
estimation using the asymptotic expansion method and 
to choose the optimal number of members of the 
asymptotic series depending on the value of a small 
parameter under a strong skin-effect in the system “AC 
loop – conductive half-space”. 

2. Mathematical model 
2.1. Analytical solution of a three-dimensional 

problem 
The study is based on the exact analytical solution of 

the linear problem presented in [8, 9] for a three-
dimensional electromagnetic field produced in the system 
“arbitrary current-carrying loop – electroconducting half-
space”. An analytical solution is found in both areas: 
dielectric, where a closed loop l of the sinusoidal current 

0I&  is located, and electro conductive with specific 
electrical conductivity g  and relative magnetic 
permeability m , where eddy currents flow. The problem 
does not impose restrictions on the geometry of the loop 
and its orientation relative to the interface, the 
electrophysical properties of the medium and the field 
frequency w . In this regard, the task is general. 

Fig. 1 shows a current-carrying loop element and the 
orientation relative to the flat surface of the media 
division of single tangent vectors to the output loop t and 
to the loop t1 mirrored from the surface. 

In the dielectric region, the vector 0 1= + +A A A A& & & &
e 2  

and scalar ef& potentials, as well as the induction of the 

magnetic field 0 1 2= + +B B B B& & & &e and the electric field 

strength 0 1 2e = + +E E E E& & & & are presented in the form of 
loop integrals : 
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where ze  is the unit vector in the direction of the axis z. 
Potentials are written under Lorenz gauge condition. 

 

 
Fig. 1. Element of arbitrary current-carrying loop. 

The first two summands in expressions (1)–(4) for 
the vector potential, magnetic induction and electric 
field strength do not depend on the properties of the 
conductive medium and are determined by the 
alternating current of the output loop and the current 
of the loop mirrored from the interface. The third 
summands in all vector fields, as well as the scalar 
potential ej& , are completely determined by a single 

function eG& that depends on the depth of field penetration 
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From (5) it is seen that the numerator of the 
subintegral function eG& depends on the components of 

the vector 1 1M Q= -r r r  connecting the observation 

point Q with the point M1 on the mirrored loop. The 
denominator of the function eG&  includes separately the 
product of the depth of field penetration by the relative 
magnetic permeability dm , and the relative magnetic 
permeability μ. 

Note that the presented expressions written for the 
case when an external electromagnetic field is created 
by a single current loop, using the principle of 
superposition, are easily extended to the case of an 
arbitrary system of loops, i.e an arbitrary external field. 
The result is also generalized for the case of an arbitrary 
time dependence of current using the Fourier transform. 
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The presented expressions allow us to determine a three-
dimensional electromagnetic field at any point in the 
region where the external field sources are located. 

2.2. Expanding the function eG& as an asymptotic 
series 

Since a strong skin-effect is being considered, a 
small parameter that follows directly from (5) is a value 
that is defined as the ratio of two dimensional values: dm  
and  distance 1r : 

 
1

12r
md

e = .  (6) 

For a nonmagnetic medium ( 1m = ), this parameter 
coincides with the ratio of the characteristic value of the 
depth of field penetration to the distance r1. For 
ferromagnetic materials, the value of the parameter ε1 
may be much larger. But in this case we will assume that 
the entered parameter remains small, for example, for 
higher frequencies than for nonmagnetic media.  

To use an approximate method for calculating an 
electromagnetic field in a dielectric half-space, it suffices 
to find an approximate representation of the function eG&  
that determines the potentials and vectors of the field. 
For the analysis to be performed, we introduce a 
dimensionless variable  

 0 2
m md

c = J = J
wmm g

  (7) 

and represent an expression for eG&  as follows: 
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Here, the dimensionless function ( )c1w  in the 
denominator of the subintegral is 
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The geometric representation of the quantity 1b  
included in the factors of the numerator in (8) is 
explained in Fig. 2. This is an angle between the vertical 
axis and the direction of the vector from the source point 

1M to the observation point Q . 
Peculiarities of improper integral (8) and its 

subintegral function, which, based on Laplace's approach 
to estimation of functions of this kind, allow us to 
substantiate the use of asymptotic expansion for the 
function eG&  [13]. 

 

Fig. 2. Mutual location of source and observation points.  

The variable c with respect to which the integration 
is performed varies in the range from 0 to ¥ , and the 
multiplier ( )11 w c  can be expanded into a power series 

with respect to c  within the convergence radius 

cc £ c , which, depending on the value m , is within 

1 2с£ c £ .  

 
( )

01

1 n

n
n

a
w i

¥

=

cæ ö= må ç ÷
è ø

.  (10) 

At 1 1c e ³ , the numerator of the subintegral 
function in (8) decreases rapidly, and at large values 
of c , it changes faster than any power function. The 
magnitude of the improper  integral (8) for small 1e is 
determined mainly by the behavior of the subintegral 
function near the origin of coordinates. The integral of 
the product of power and exponential functions exists 
even outside the convergence domain  
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However, a series composed of integrals from the 
members of subintegral function expansion is divergent 
for any 1e  [13]. To use the series, it is necessary to 
restrict it to a fixed number of members N . In this case, 

eG&  is replaced by the function eNG& with an error that 
decreases with decreasing 1e [14].  
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where the multiplier, which contains a small parameter is 

associated with a constant propagation gwmm= 0ip by 

the ratio 
pi

r m
=

e 11  

3. Characteristics of asymptotic approximation 
3.1 Estimation of an asymptotic series expansion 

error  
Let us represent the function eG&  by the sum of 

the finite number of its first N  terms )(n
eG&  and the 

remainder NR   

( )
1 1

0
( , ) ( , )

N n
e e N eN N

n
G G R G R

=
= + m e = + m eå& & & .   (13) 

The remainder NR  depends on both the number 
N and the quantities 1, em . Therefore, when studying the 
approximate method of calculation, it is necessary to 
determine not only the influence of the value of a small 
parameter, but also the number of members of the 
asymptotic series.  

Asymptotic series (12) is divergent with the feature 
generally characteristic of asymptotic series, that when 
the number of series members increases, the error first 
decreases, reaching a minimum, and then the addition of 
new members only increases it. This feature is clearly 
illustrated in [15] and shown in Fig. 3. 
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Fig. 3. Relative error eNN GR &=D  depending  

on the number of members in the series N  ( 0;5 =r=m ). 

With 1e decreasing (for example, with increasing a 
field frequency or for materials with higher electrical 
conductivity, or at points most distanced from the 
interface), the minimum error decreases and is achieved 
when the number of the asymptotic series members 
increases. This feature determines the usefulness of 
asymptotic series. 

Bounded power series, to which series (12) belongs, 
are called asymptotic series of the Poincare type [14]. 
For them, the error does not exceed the first rejected 
member and, therefore, quickly approaches zero at 

0e ® . However, each member of an asymptotic series 
is determined with an error, whose value depends on the 
value of the small parameter and the number of the series 
member. Thus, the estimate of the expansion accuracy 
in the magnitude of the first rejected member is 
approximate and this also requires an estimate of the 
error of each member of the series. 

In [15], it is proposed to estimate the error of each 
member of the series, taking into account the distance 
between the source point on the mirrored loop and the 
observation point at 0=r . In this case, there is only the 
maximum value of the error and at the same time greatly 
simplifies the expressions for its estimation. The relative 
value of the error nD for a member of a series with a 
number n  is determined by the expression 
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The relative error of calculation of each expansion 
member at ¥®n  tends to infinity. As the number n of 
series members increases, so does the error of its 
determination, although its relative contribution to the 
total sum decreases. The value of the relative error for 
the first ten members of the series at different values of 
the parameter 1e  is shown in Fig. 4.  
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Fig. 4. The value of the relative error  

of asymptotic series members. 

It is seen that with the number n of the series 
members increasing, there is also an increase in the error 
of its determination, although at the same time there is a 
decrease in its relative contribution to the total sum.  
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3.2. Choosing the number of members of an 
asymptotic series  

When using the asymptotic method, an important 
practical task is the optimal choice of the number of 
members of an asymptotic series depending on the value 
of the small parameter 1e . The choice can be based on 

the analysis of the value of the remainder ),( 1emNR . 
Two approaches can be used here: the first is based on 
the estimation of the last considered member of the 
series, the second – directly on the estimation of the 
remainder NR at a given allowable error.  

Choosing the number of members to estimate the 
error of the last member of a series. The possibility  
of applying the first method is due to the fact that 

),( 1emNR  in (12) does not exceed the last rejected 
member of the series, which, however, itself is determined 
with a certain error  [9]. In this case, if a certain series 
member is calculated with an error exceeding a certain 
allowable value, for example, if the error becomes 
comparable to the value of the expansion member, then 
taking into account such a member of the series does not 
increase the accuracy of calculation. Moreover, if the 
relative error in determining the values of series 
members increases with increasing their number, then 
the assessment of the achievement, by any member, of 
the relative error limit will determine the limit value of 
the number of series members, beyond which increasing 
their number will only increase the total error. 

The number of members of a series should be 
limited to the value of N at which their further increase 
leads only to an increase in the total error. It follows that 
the number of members of a series should not exceed the 
value at which the relative error of the last member  
of the series does not exceed a given value NC , for 
example, equal to one. In this case, the condition for 
determining the number of series members Nn = can be 
written in the form  

( )1n NСD e £ .                          (14) 

Having compared the data presented in Fig. 4, with 
the dependences in Fig. 3, we can see that the minimum 
error of the approximate calculation is achieved when 
the number of members of the series meets the condition 

1»NС . This confirms the assumption that the estimate 
of the optimal number of members of the series can be 
performed on the basis of the estimate of the error of the 
last considered member. 

The limit number of members of the series found 
from (13) for different allowable values of the relative 

error nD  for the last considered member of the series 
at Nn =  is shown in Fig. 5. 
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Fig. 5. The limit number of members of an asymptotic series. 

As we can see from Fig. 5 when the value of the 
small parameter 1e  decreases (at higher frequencies or 
for materials with higher electrical conductivity), there is 
a rapid increase in the possible number of members of 
the asymptotic series. However, the value of the 
considered members of the series at large values n  is 
very small. This fact is illustrated by the data in Fig. 6, 
which shows the value of the limit members of the 
series, which are obtained by fulfilling condition (14). 
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Fig. 6. The limit of the boundary members  

of the asymptotic series selected under condition (14). 

As Fig. 6 shows, the calculation accuracy can 
significantly exceed the required or even reasonable 
level. Calculations without further limitation of  
the number of series members are unnecessarily 
complicated. 

Choosing the number of members for a given error 
of an asymptotic series. The approach is to estimate the 
error of the whole asymptotic series ( )1,N ND e .  
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Assume that it is sufficient that the calculation be 
performed with an accuracy at which the error does not 
necessarily have to be less than the specified minD . 
Furthermore, the approximate method of calculation, 
whose accuracy depends on the value of the small 
parameter 1e being used, we then define the error 

limit max minD > D , the excess of which indicates the 
inadmissibility of using this method.  

Consider, as an example, a nonmagnetic medium 
1m =  for which we develop a series of dependences 

( )1,N N eN R GD e = &  as functions of the number of 

considered series members for different values of a small 
parameter.. At the same time we choose specific error 

limits, for example, 3
min 10-D =  і 1

max 10-D = . The 

dependencies ( )1,N ND e are shown in Fig. 7.  

 

 
Fig. 7. Choosing the number of series members  

for 3
min 10-=D , 1

max 10-=D . 

The Figure highlights two curves, among others. 
One curve, which is shown by a solid bold line at 

min 0.18e = , corresponds to the dependence for which 
the minimum value of the error is equal to the limit 
value ( )min min,N ND e = D  and which is realized for 

the number of series members 6=N . At lower values of 
the small parameter 1 mine < e , the error limit value minD  
will be implemented when the number of members of 
the series does not exceed the set value, i.e. 6£N . 
The Figure shows the dependencies when we can be 

limited to a smaller number of series members: 

1 10.15 4; 0.1 2N Ne = = e = = . 
The other curve in Fig. 7, which is shown by a bold 

dotted line at max 0.5e = , corresponds to the dependence 
for which the minimum value of the error is equal to the 
limit value ( )max max,N ND e = D and which is realized 

for the number of series members 2=N . With the 
values of a small parameter 1 maxe > e , for any number 

of series members, the calculation error exceeds maxD . 
This proves that it must not be to use the approximate 
method for such values of a small parameter at the 
chosen limit value of an error maxD .  

In the intermediate range of values of the  
small parameter min 1 maxe < e < e , the minimum 
achievable calculation errors are already within 

min maxND < D < D  In this case, these minimum errors 
are realized for the number of members of the series, 
which also do not exceed the maximum number 

6=N corresponding to the value of the number of 
members of the series at 1 mine = e . 

The main result of this analysis is that when using 
the method of asymptotic expansion, the number of 
members of a series can be limited to a relatively small 
number, which is determined by the allowable accuracy 
of the calculation (relative error). 

The number of expansion members is determined by 

the value of a small parameter 1
02h f

m
e =

p mm g
, which 

depends on the electrophysical parameters of the 
conductive medium ,m g , the field frequency f and the 
minimum distance of the current-carrying loop to the 
interface h. For a specific electrically conductive 
material, the obtained results allow us to indicate the 
required number of expansion members depending on 
the field frequency and the minimum distance of the 
current-carrying conductor from the body surface. 

Consider an example where the conductive 
medium is aluminum with electrophysical parameters 

7 -1 11, 3.7 10 Ом м-m = g = × × . Setting specific values of 

the small parameter 1e , including the set min 0.18e =  
and max 0.5e = , we find a dependence of the field 
frequency on the minimum height of the current-carrying 
conductor at const1 =e  and respectively for a specific 
number of series members, at which the minimum error 
for the given 1e  is realized. Such dependences are shown 
in Fig. 8. 
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Fig. 8. The dependence of the field frequency on the minimum 

height of the current loop at the given number of series 
members for aluminum ( 310min

-D = , 110max
-D = ). 

When performing practical calculations, these 
dependences allow us to choose the required number of 
members of an asymptotic series and specify an estimate 
of the calculation accuracy. Usually the material and 
field frequency are known. Further, taking account a 
geometrical configuration, it is necessary to define only 
the minimum distance from a loop to a conducting 
surface and given the presented dependences to find 
calculation parameters. In that case, if a current 
dependence on time differs from sinusoidal, it is possible 
to use a frequency spectrum of the current and for each 
frequency (or for characteristic frequencies) to apply the 
described approach. 

4. Conclusion 
1. With a strong skin-effect, provided that the depth 

of the skin layer is small compared not only to the 
characteristic size of the conductive body, but also the 
distance from the body to external field sources, an 
effective method of calculating three-dimensional 
problems of the electromagnetic field theory is the 
method of asymptotic expansion. 

2. The error of the calculation method, which is 
determined by a small parameter proportional to the ratio 
of the depth of field penetration to the distance between 
the conductive body and the external field sources, also 
depends on the number of considered members of a 
series, the number of which must be limited. 

3. It is established that the number of members of a 
series can be limited to a relatively small number, which 
is determined by the specified limits of the allowable 
accuracy of the calculation. This allows, depending on 
the value of a small parameter, and for a particular 
conductive material depending on the field frequency 

and the minimum distance from the circuit to the 
conductive body, the determination of the optimal 
number of members of an asymptotic series and 
specification of an estimate of calculation accuracy. 
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ПАРАМЕТРИ ДЛЯ РОЗРАХУНКУ 

ТРИВИМІРНОГО ЕЛЕКТРОМАГНІТНОГО 
ПОЛЯ МЕТОДОМ АСИМПТОТИЧНОГО 

РОЗКЛАДАННЯ 

Юрій Васецький, Ірина Мазуренко 

Представлено наближений аналітичний розв’язок 
тривимірної задачі теорії електромагнітного поля, 
який оснований на використанні асимптотичного 
розкладання за умови сильного скін-ефекту для поля, 
створеного замкнутим струмовим контуром, розта-
шованим поблизу електропровідного півпростору. 
Зазначено, що кожен член асимптотичного ряду 
визначається з похибкою, величина якої залежить від 
значення малого параметра і  зростає зі збільшенням 
номера члена ряду, що обумовлює обмеженість 
кількості його членів. Встановлено, що при ви-
користанні методу асимптотичного розкладання 
число членів ряду може бути обмежено відносно 
невеликою кількістю, яка визначається заданими 

межами припустимої точності розрахунку (від-
носною похибкою). Визначено оптимальне число 
членів асимптотичного ряду та вказано оцінку 
точності розрахунку в залежності від величини 
малого параметру, а для конкретного електропро-
відного матеріала в залежності від частоти поля і 
мінімальної відстані від джерел зовнішнього поля до 
електропровідного тіла 
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