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Abstract: The paper deals with an approximate
analytical solution of a three-dimensional problem of the
theory of electromagnetic field, which is based on the
use of asymptotic expansion under the condition of a
strong skin-effect for a field produced by a closed
current-carrying loop located near a conducting half-
space. It is noted that each member of an asymptotic
series is determined with an error, the value of which
depends on the value of a small parameter and increases
with increasing the index of series member resulting in
limited number of its members. It is identified that when
using the method of asymptotic expansion, the number
of members of a series can be limited by the relatively
small number, which is determined by the specified
limits of the allowable accuracy of calculation (relative
error). The authors determine the optimal number of
asymptotic series members, and indicate that calculation
accuracy depends on the value of a small parameter, and
for a specific conducting material it depends on the field
frequency and the minimum distance from external field
sources to a conducting body.
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1. Introduction

Despite the widespread use of numerical methods
for calculating three-dimensional electromagnetic fields,
analytical or numerical-analytical approaches, which allow
the most significant characteristics of electromagnetic
systems to be taken into account, remain effective.
Analytical, accurate and approximate methods of calculating
an alternating electromagnetic field are used in solving
inverse problems of the theory of electromagnetic field and
optimization of electromagnetic systems. For such
applications, the difficulties associated with a significant
increase in the volume of calculations and the simultaneous
need to ensure high accuracy of field calculation, for
example, in the problems of extending the field from the
surface [1-3].

The need to solve the inverse problems of field
theory and optimize the geometry of electromagnetic
systems arises in the development of devices for
electrical engineering equipment. They occur in the
creation of technological devices for heat treatment of

metals [4], magnetic pulse treatment of metal products
[5], treatment of metallic materials with electric current
and high intensity electromagnetic field [6].

In the above examples, in in electroconductive
media of the elements of devices that are affected by the
electromagnetic field, there is a strong skin-effect when
the field and the induced current exist in a thin surface
layer of the conducting body [7]. In this case, one
usually uses a mathematical model, in which the body of
real shape is locally replaced by an electroconducting
half-space, and the external field is produced by sources
located outside the body in the dielectric region. The
application of the analytical solution of such a problem,
obtained in [8, 9], in the general formulation is also
associated with rather cumbersome calculations.
Therefore, even in this case, the development and
implementation of approximate methods for calculating
fields in specific applications are relevant.

An effective approach for determining three-dimensional
electromagnetic fields using the approximate asymptotic
method in [10-12] is used to solve inverse problems to
find the spatial geometry of field inductors in the field of
heat treatment using induction heating of moving
metal strips The electromagnetic field is considered
in the case of a strong skin-effect in the extended
interpretation, when a strong skin-effect means not only
a small value of the depth of penetration of the field into
the conductive medium compared to body size, but also
the fact that the depth of field penetration is a small
value compared to the characteristic dimensions
in the entire electromagnetic system, including the
dimensions of the current-carrying loop and the distance
from the loop to the media dividing boundary. The ratio
of penetration depth to the characteristic dimensions of
electromagnetic system is believed to be a small
parameter, but not necessarily to tend to zero.

When obtaining the geometry of the inductors for
induction heating of moving strips, calculations were
performed for a specific number of members in the
asymptotic series, and the accuracy of the results was
checked separately. However, in the method of
asymptotic expansion, the number of members of the
series is limited not only by the required accuracy of the
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calculation. The error has a lower limit, which is
determined by the value of a small parameter. Thus
excess of the certain number of series members can lead
to growth of the general error of calculation.

The aim of this work is to analyze the error
estimation using the asymptotic expansion method and
to choose the optimal number of members of the
asymptotic series depending on the value of a small
parameter under a strong skin-effect in the system “AC
loop — conductive half-space”.

2. Mathematical model

2.1. Analytical solution of a three-dimensional
problem

The study is based on the exact analytical solution of
the linear problem presented in [8, 9] for a three-
dimensional electromagnetic field produced in the system
“arbitrary current-carrying loop — electroconducting half-
space”. An analytical solution is found in both areas:
dielectric, where a closed loop | of the sinusoidal current

ﬁo is located, and electro conductive with specific
electrical conductivity g and relative magnetic
permeability m, where eddy currents flow. The problem

does not impose restrictions on the geometry of the loop
and its orientation relative to the interface, the
electrophysical properties of the medium and the field
frequency w. In this regard, the task is general.

Fig. 1 shows a current-carrying loop element and the
orientation relative to the flat surface of the media
division of single tangent vectors to the output loop t and
to the loop t; mirrored from the surface.

In the dielectric region, the vector Ae =AO +A1 +A2
and scalar fe potentials, as well as the induction of the
magnetic field @e = @0 + @1 + @2 and the electric field

strength @e = &0 + &1 + @2 are presented in the form of
loop integrals :
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wheree, is the unit vector in the direction of the axis z.
Potentials are written under Lorenz gauge condition.
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Fig. 1. Element of arbitrary current-carrying loop.

The first two summands in expressions (1)—(4) for
the vector potential, magnetic induction and electric
field strength do not depend on the properties of the
conductive medium and are determined by the
alternating current of the output loop and the current
of the loop mirrored from the interface. The third
summands in all vector fields, as well as the scalar
potential §,, are completely determined by a single

function ée that depends on the depth of field penetration
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From (5) it is seen that the numerator of the
subintegral function éedepends on the components of

Jr
o QM)dJ:

the vector rp =ryq-rg connecting the observation

point Q with the point My on the mirrored loop. The
denominator of the function (@e includes separately the

product of the depth of field penetration by the relative
magnetic permeability dm, and the relative magnetic

permeability u.

Note that the presented expressions written for the
case when an external electromagnetic field is created
by a single current loop, using the principle of
superposition, are easily extended to the case of an
arbitrary system of loops, i.e an arbitrary external field.
The result is also generalized for the case of an arbitrary
time dependence of current using the Fourier transform.
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The presented expressions allow us to determine a three-
dimensional electromagnetic field at any point in the
region where the external field sources are located.

2.2. Expanding the function &, as an asymptotic
series

Since a strong skin-effect is being considered, a
small parameter that follows directly from (5) is a value
that is defined as the ratio of two dimensional values: dm

and distance r,:

e =——. (6)

\/E n

For a nonmagnetic medium (m=1), this parameter
coincides with the ratio of the characteristic value of the
depth of field penetration to the distance r;. For
ferromagnetic materials, the value of the parameter &;
may be much larger. But in this case we will assume that
the entered parameter remains small, for example, for
higher frequencies than for nonmagnetic media.

To use an approximate method for calculating an
electromagnetic field in a dielectric half-space, it suffices

to find an approximate representation of the function ée
that determines the potentials and vectors of the field.
For the analysis to be performed, we introduce a
dimensionless variable

J =m—dJ (7)
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and represent an expression for ée as follows:
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Here, the dimensionless function Wl(C) in the
denominator of the subintegral is

9)

The geometric representation of the quantityb,

included in the factors of the numerator in (8) is
explained in Fig. 2. This is an angle between the vertical
axis and the direction of the vector from the source point
M, to the observation pointQ .

Peculiarities of improper integral (8) and its
subintegral function, which, based on Laplace's approach
to estimation of functions of this kind, allow us to
substantiate the use of asymptotic expansion for the

function ée [13].
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Fig. 2. Mutual location of source and observation points.
The variable c with respect to which the integration
is performed varies in the range from 0 to ¥, and the
multiplier1/w, (c) can be expanded into a power series
with respect to c within the convergence radius

c £c,, which, depending on the value m, is within
1£c, £4/2.
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At c/e; 31, the numerator of the subintegral

function in (8) decreases rapidly, and at large values
ofc, it changes faster than any power function. The
magnitude of the improper integral (8) for small e, is
determined mainly by the behavior of the subintegral
function near the origin of coordinates. The integral of

the product of power and exponential functions exists
even outside the convergence domain
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However, a series composed of integrals from the
members of subintegral function expansion is divergent
for anye, [13]. To use the series, it is necessary to

In this case,

(11)

restrict it to a fixed number of members N .
&, is replaced by the function éeN with an error that

e

decreases with decreasing e, [14].
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where the multiplier, which contains a small parameter is
associated with a constant propagation p =,/iwmm,g by

e _m
the ratio 12 = —

Ji b

3. Characteristics of asymptotic approximation
3.1 Estimation of an asymptotic series expansion
error

Let us represent the function ée by the sum of

the finite number of its first N terms & and the
remainder R,

N
G, = & &V +Ry(me)) =Gey +Ry(mey). (13)
n=0
The remainder R, depends on both the number
N and the quantities m, e, . Therefore, when studying the

approximate method of calculation, it is necessary to
determine not only the influence of the value of a small
parameter, but also the number of members of the
asymptotic series.

Asymptotic series (12) is divergent with the feature
generally characteristic of asymptotic series, that when
the number of series members increases, the error first
decreases, reaching a minimum, and then the addition of
new members only increases it. This feature is clearly
illustrated in [15] and shown in Fig. 3.
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Fig. 3. Relative error D, :lRNl/ depending

With e, decreasing (for example, with increasing a

field frequency or for materials with higher electrical
conductivity, or at points most distanced from the
interface), the minimum error decreases and is achieved
when the number of the asymptotic series members
increases. This feature determines the usefulness of
asymptotic series.

Bounded power series, to which series (12) belongs,
are called asymptotic series of the Poincare type [14].
For them, the error does not exceed the first rejected
member and, therefore, quickly approaches zero at
e ® 0. However, each member of an asymptotic series
is determined with an error, whose value depends on the
value of the small parameter and the number of the series
member. Thus, the estimate of the expansion accuracy
in the magnitude of the first rejected member is
approximate and this also requires an estimate of the
error of each member of the series.

In [15], it is proposed to estimate the error of each
member of the series, taking into account the distance
between the source point on the mirrored loop and the
observation point at r =0. In this case, there is only the

maximum value of the error and at the same time greatly
simplifies the expressions for its estimation. The relative
value of the error D for a member of a series with a

number n is determined by the expression
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The relative error of calculation of each expansion
member atn ® ¥ tends to infinity. As the number n of
series members increases, so does the error of its
determination, although its relative contribution to the
total sum decreases. The value of the relative error for
the first ten members of the series at different values of

the parameter e, is shown in Fig. 4.
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Fig. 4. The value of the relative error
of asymptotic series members.

It is seen that with the number nof the series
members increasing, there is also an increase in the error
of its determination, although at the same time there is a
decrease in its relative contribution to the total sum.
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3.2. Choosing the number of members of an
asymptotic series

When using the asymptotic method, an important
practical task is the optimal choice of the number of
members of an asymptotic series depending on the value

of the small parameter e,. The choice can be based on
the analysis of the value of the remainder R (m,e,).
Two approaches can be used here: the first is based on
the estimation of the last considered member of the
series, the second — directly on the estimation of the
remainder R, at a given allowable error.

Choosing the number of members to estimate the
error of the last member of a series. The possibility
of applying the first method is due to the fact that
Ry (m,e;) in (12) does not exceed the last rejected

member of the series, which, however, itself is determined
with a certain error [9]. In this case, if a certain series
member is calculated with an error exceeding a certain
allowable value, for example, if the error becomes
comparable to the value of the expansion member, then
taking into account such a member of the series does not
increase the accuracy of calculation. Moreover, if the
relative error in determining the values of series
members increases with increasing their number, then
the assessment of the achievement, by any member, of
the relative error limit will determine the limit value of
the number of series members, beyond which increasing
their number will only increase the total error.

The number of members of a series should be
limited to the value of N at which their further increase
leads only to an increase in the total error. It follows that
the number of members of a series should not exceed the
value at which the relative error of the last member
of the series does not exceed a given valueC, , for

example, equal to one. In this case, the condition for
determining the number of series members n = N can be
written in the form

Dy (e1) EC - (14)

Having compared the data presented in Fig. 4, with
the dependences in Fig. 3, we can see that the minimum
error of the approximate calculation is achieved when
the number of members of the series meets the condition
Cy » 1. This confirms the assumption that the estimate

of the optimal number of members of the series can be
performed on the basis of the estimate of the error of the
last considered member.

The limit number of members of the series found
from (13) for different allowable values of the relative

error D, for the last considered member of the series
atn=N is shown in Fig. 5.

N
100

Dn:N:]-
1 /

Dn=n=0,5 Dn=n=0,25

0 0,2 0,4 06 e

Fig. 5. The limit number of members of an asymptotic series.

As we can see from Fig. 5 when the value of the
small parameter e, decreases (at higher frequencies or

for materials with higher electrical conductivity), there is
a rapid increase in the possible number of members of
the asymptotic series. However, the value of the
considered members of the series at large values n is
very small. This fact is illustrated by the data in Fig. 6,
which shows the value of the limit members of the
series, which are obtained by fulfilling condition (14).
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Fig. 6. The limit of the boundary members
of the asymptotic series selected under condition (14).

As Fig. 6 shows, the calculation accuracy can
significantly exceed the required or even reasonable
level. Calculations without further limitation of
the number of series members are unnecessarily
complicated.

Choosing the number of members for a given error
of an asymptotic series. The approach is to estimate the

error of the whole asymptotic series Dy (N, ;).
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Assume that it is sufficient that the calculation be
performed with an accuracy at which the error does not
necessarily have to be less than the specified D,

Furthermore, the approximate method of calculation,
whose accuracy depends on the value of the small
parameter e, being used, we then define the error

limit D ppax > Dpin » the excess of which indicates the

inadmissibility of using this method.
Consider, as an example, a nonmagnetic medium
m=1 for which we develop a series of dependences

Dy (N, 1) =|Ry|/|&| as functions of the number of

considered series members for different values of a small
parameter.. At the same time we choose specific error

limits, for example, Dpyin =107 i Dnax =107 The

dependencies Dy (N, e; ) are shown in Fig. 7.
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Fig. 7. Choosing the number of series members
for D,,;, =10, D, =107,

The Figure highlights two curves, among others.
One curve, which is shown by a solid bold line at
€min = 0.18, corresponds to the dependence for which
the minimum value of the error is equal to the limit
value Dy (N, emin ) =Dpin and which is realized for
the number of series members N =6. At lower values of
the small parameter e, < iy, » the error limit value D,

will be implemented when the number of members of
the series does not exceed the set value, i.e. N£6.
The Figure shows the dependencies when we can be

limited to a smaller number of series members:
=015 N=4;, ¢ =01N=2.

The other curve in Fig. 7, which is shown by a bold
dotted line at e,, = 0.5, corresponds to the dependence

for which the minimum value of the error is equal to the
limit value Dy (N, €max ) = Dmax @nd which is realized
for the number of series members N =2. With the
values of a small parameter €; > €, ,» for any number

of series members, the calculation error exceeds D,y -

This proves that it must not be to use the approximate
method for such values of a small parameter at the
chosen limit value of an error D,y -

In the intermediate range of values of the
small parameter epin <€ <€max. the minimum
achievable calculation errors are already within
Dmin <DN <Dpax In this case, these minimum errors

are realized for the number of members of the series,
which also do not exceed the maximum number
N =6 corresponding to the value of the number of

members of the series at € =€, -

The main result of this analysis is that when using
the method of asymptotic expansion, the number of
members of a series can be limited to a relatively small
number, which is determined by the allowable accuracy
of the calculation (relative error).

The number of expansion members is determined by

m
h/2pf mmqyg ’
depends on the electrophysical parameters of the
conductive mediumm, g, the field frequency f and the

minimum distance of the current-carrying loop to the
interface h. For a specific electrically conductive
material, the obtained results allow us to indicate the
required number of expansion members depending on
the field frequency and the minimum distance of the
current-carrying conductor from the body surface.
Consider an example where the conductive
medium is aluminum with electrophysical parameters

m=19=3.7:0"Om™
the small parametere,, including the set e, =0.18

the value of a small parameter e; = which

I Setting specific values of

and ep. =0.5, we find a dependence of the field

frequency on the minimum height of the current-carrying
conductor ate, = const and respectively for a specific

number of series members, at which the minimum error
for the givene, is realized. Such dependences are shown

in Fig. 8.
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Fig. 8. The dependence of the field frequency on the minimum
height of the current loop at the given number of series

members for aluminum (D, =107, D =107").

When performing practical calculations, these
dependences allow us to choose the required number of
members of an asymptotic series and specify an estimate
of the calculation accuracy. Usually the material and
field frequency are known. Further, taking account a
geometrical configuration, it is necessary to define only
the minimum distance from a loop to a conducting
surface and given the presented dependences to find
calculation parameters. In that case, if a current
dependence on time differs from sinusoidal, it is possible
to use a frequency spectrum of the current and for each
frequency (or for characteristic frequencies) to apply the
described approach.

4. Conclusion

1. With a strong skin-effect, provided that the depth
of the skin layer is small compared not only to the
characteristic size of the conductive body, but also the
distance from the body to external field sources, an
effective method of calculating three-dimensional
problems of the electromagnetic field theory is the
method of asymptotic expansion.

2. The error of the calculation method, which is
determined by a small parameter proportional to the ratio
of the depth of field penetration to the distance between
the conductive body and the external field sources, also
depends on the number of considered members of a
series, the number of which must be limited.

3. It is established that the number of members of a
series can be limited to a relatively small number, which
is determined by the specified limits of the allowable
accuracy of the calculation. This allows, depending on
the value of a small parameter, and for a particular
conductive material depending on the field frequency

and the minimum distance from the circuit to the
conductive body, the determination of the optimal
number of members of an asymptotic series and
specification of an estimate of calculation accuracy.
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MAPAMETPH JIISI PO3PAXYHKY
TPUBUMIPHOI'O EJTEKTPOMATHITHOI'O
MOJIsI METOJIOM ACUMIITOTUYHOT' O
PO3KJIAJAHHS

IOpiii Bacenpkuii, Ipuna Mazypenko

[pencraBnerHo HAOMDKEHWI aHATNITAYHHUN PO3B’SI30K
TPUBHMIpHOI 3ajaui Teopii eNeKTPOMAarHiTHOTO IO,
SAKAH OCHOBAaHMH Ha BHKOPHCTaHHI ACHMIITOTHYHOTO
PO3KJIalaHHS 32 YMOBH CHIJIHOTO CKiH-€()eKTY JUIs MOJI,
CTBOPEHOT0 3aMKHYTHM CTPYMOBHM KOHTYPOM, pO3Ta-
IIOBAaHMUM TIO0JM3Y EJEKTPONPOBIIHOTO IiBIPOCTODY.
3a3HaueHO, IO KOXKEH WIEH AaCHMIITOTHYHOTO psty
BU3HAYAETHCS 3 OXUOKOIO, BEJIMYHMHA SIKOT 3aJISKUTh Bij
3HAUEHHS MAaJIOTO MapaMerpa i 3pocTae 3i 30UTbIICHHIM
HOMEpa wWieHa psAIy, O0 OOYMOBIIOE€ OOMEXKCHICTh
KiTbKOCTI WOro uineHiB. BcranoBieHo, mo mnpu BU-
KOPHCTaHHI METOJy aCHUMITOTHYHOTO pO3KJIaJaHHs
YUCJIO WICHIB PALYy MOXe OyTH OOMEXECHO BiTHOCHO
HEBEJIMKOIO KUIBKICTIO, sIKA BU3HAYA€THCS 3aJaHUMH

MEXaMH OPHIYCTHMOI TOYHOCTI po3paxyHKy (Biz-
HOCHOIO MOXHOKOI0). BH3HAYEHO ONTHUMAJbHE YHCIIO
YIICHIB aCHMITOTHYHOTO PNy Ta BKa3aHO OIIHKY
TOYHOCTI PO3paxyHKy B 3aJIeKHOCTI BiJl BEJIWYHHH
Majoro mapamerpy, a il KOHKPETHOTO EJEeKTPOIpPO-
BITHOTO Marepiaja B 3aJEKHOCTI Bil 9acTOTH IONA 1
MiHIMaJIbHOI BiICTaHi Bi JKepes 30BHIIIHBOTO MO 10
€JIEKTPOTIPOBITHOTO Tija
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