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Abstract: The notions of angles between matrices
and between polynomials of fractional linear systems
and electrical circuits are proposed. In analysis of angles
between state matrices of fractional linear systems the
Hadamard product of two matrices is applied. The
angles between matrices and their functions are also
addressed. The angles between symmetrical and
asymmetrical part of matrices are investigated. The
angles between polynomials of transfer matrices of
fractional linear systems are analyzed and some new
properties are established.

Key words: angle between matrices, polynomials,
matrix function, linear, electrical circuit.

1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains
forever in the positive orthant for all nonnegative inputs.
An overview of state of the art in positive theory is given
in [1, 3, 8, 12]. Variety of models having positive
behavior can be found in engineering, especially in
electrical circuits [15], economics, social sciences,
biology and medicine, etc. [3, 12].

The positive electrical circuits have been analyzed in
[5-7, 9-11, 15]. A new class of normal positive linear
electrical circuits has been introduced in [7]. Positive
fractional linear electrical circuits have been investigated
in [10, 15]. Stability of continuous-time and discrete-
time linear systems with inverse state matrices has been
analyzed in [14] and the transfer matrices with positive
coefficients of standard and fractional positive systems
in [11, 16]. The angles between state matrices and
between polynomials of transfer matrices of linear
electrical circuits have been investigated in [6]. Some
recent results in fractional systems theory have been
given in [2, 17-19].

In this paper the notions of angles between
matrices and polynomials of fractional linear
systems will be introduced and their basic properties
will be investigated.

The paper is organized as follows. In section 2 the
basic definitions and properties of fractional positive

linear systems are recalled. The angles between matrices
of fractional linear systems and electrical circuits are
introduced and their properties are analyzed in section 3.
The angles between matrices and their functions are
addressed in section 4. The angles between two
polynomials are introduced and their properties are
investigated in section 5. Concluding remarks are
given in section 6.

The following notation will be used: A — the set of

real numbers, A" ™ — the set of N~ m real matrices,

A"™ _thesetof N~ m real matrices with nonnegative

entriesand AT = Al M_ —the set of N~ n Metzler

matrices (real matrices with nonnegative off-diagonal
entries), |, —the N~ n identity matrix.

2. Positive fractional linear systems

Consider the fractional linear continuous-time
system described by the state equations
d®x(t
- ( ) - AX(t) + Bu(t), (2.1a)
y(t) = Cx(t) + Du(t), (2.1b)

where x(t) TA", u@)TA"™, y(t) TA® are the
state, input and output vectors and ATA"", BTA" ™,
CTA"" DTA"™,

e f@e)_ 1t k()

oDf f(t)= dt? (3(1-&)8(’[—t)a

(2.1c)
O<a<],

¥
where £(t) =% and G(x) = yt*"e'dt, Re(x)>0
0

is the Euler gamma function.

It is well-known [15] that in fractional electrical
circuits as the state variables X (t),..., x,(t) (the
components of the state vector X(t)) the currents in the

coils and voltages on the capacitors are chosen.
Definition 2.1. [3, 8] The fractional linear system

(2.1) is called (internally) positive if x(t) TA" and
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y=y(t) TAP, tT[0,+¥] for any x,=x(0)TA!
and every u(t) TA™, t T[0,+¥].
Theorem 2.1. [3, 8] The fractional linear system
(2.1) is positive if and only if
ATM_ ,BTA!", CTA?", DTA’". (22
Definition 2.2. [3, 8] The positive fractional linear
system is called asymptotically stable if

[ =0 f x, TA". 2.
tI(|®n;!x(t) 0 forany X, N (2.3)
Theorem 2.2. [3, 8] The positive fractional linear
system is asymptotically stable if and only if:
1) All coefficients of the characteristic polynomial

det[l s- A]=s"+a ,s" " +..+as+a, (24)
are positive, i.e. a, >0 for k=0,1,...,n-1.
2) There exists strictly positive vector

I=[1, L L] .1 >0,k=1..,n suchthat

Al <0. (2.5)

3. Angles between state matrices of fractional
linear systems

In this section the angle between two matrices will
be defined.

To any given matrix A= [aij]'l‘R”’m the following
two corresponding vectors can be defined
A=[a,;Ka, a,Ka,, a,Ka,] TA™

and

(3.1a)

A=[a,Ka, a,Ka, a,Ka ' TA™. (3.1b)

T denotes the transpose.

Using the vectors of the matrices ATA™™ and
B=[b;]TA"™ we may defined the following scalar

product of the two matrices.
Definition 3.1. The scalar

('K‘! E) = (Av é) = _° é:aljbi]

i=1j=1

(3.2)

is called the scalar product of the matrices A and B.
In particular case if A = B then

8 2 .2
=aaa;>0
i=1j=1

(AR)=(A A)=|A]

A2
:|A| (3.3)
for any nonzero matrix ATA" ™.

Using (3.2) and (3.3) we may define the angle j

between two given matrices A and B of the same
dimensions.

Definition 3.2. The angle defined by
(A,
f=Ff,, =arccos———

A8

AB
)=arccos( 8)

o3]]

A l

A

A

B

(3.4a)
0<f<p,

is called the angle ¥ between the matrices A and B.

The relation (3.4a) can be equivalently written in the
form

—
|
o8]
>
o>

) _(
Bl |Al8

From (3.4b) it follows the following conclusion.

. .B)

cost =cosf, 5 = (3.4b)

>
>

Conclusion 3.1.

cosf, ; =cosfy , and cosf_, 5 =cosf; ,. (35)

In particular case if B = A then from (3.4b) we have
cosf=1and f=0.

Example 3.1. Find the cosj between the following
matrices

¢l 20 €0 2
_8 u _é u
A—éO 1u B—él 0u (3.6)
82 34 g-1 1y
In this case

A=[1-20123]",B=[0210-11] (3.7a)
and
A=[102-213]",B=[01-1201]. (3.7b)
Using (3.2), (3.3), (3.4b) and (3.7) we obtain

|§|2 s 2 , (3.8)
and

cosf =cosf, 5 =

_(AB)_(AB)_ 3 (3.80)

= |K||E_3| = |A||B| TN 0.260.

Consider the following two matrices of the same
dimensions

A=[a;]TA"", B=[b,JTA"" (3.9)
Definition 3.3. The matrix defined by
éayby, Lo agby, 0
AoB=F L L L TA"™™ (3.10)

éanlbnl L anm bnm ﬁ

is called the Hadamard product of the matrices (3.9)
[13].
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Theorem 3.1. If the Hadamard product (3.10) of the
matrices (3.9) is zero matrix then the angle ¢ between

the matrices (3.9) is equal to % .

Proof. From Definitions 3.1 and 3.3 it follows that
AoB =0 implies

(A,B)= é]iga”b =0. (3.11)

i=1j=1

In this case from (3.4b) we obtain cosj =0 and

f= B a)
2
Example 3.2. Using (3.10) for the matrices
1 0 -2u 0 1 Ou
T8 1 3078 o of G
€ u é u
we obtain
¢é0 0 O
AoB=3 U (3.13)
0 0 0f
and
-
(AB)=aaab; =0. (3.14)
i=1j=1

Therefore, by Theorem 3.1 the angle between the
matrices (3.12) is equal %

Theorem 3.2. The angle jJ
A=[a;]1 TA ™ B= [b;11 TA™™ satisfies the condition

cosj 30 ifand only if

between the matrices

n m
(A,B)= & aa;by; 3 (3.15a)
i=1j=1
and cosj <0 ifand only if
(A,B)= aaa“b <0. (3.15b)

i=1j=1
Proof. Note that if (3.15a) is satisfied then from (3.4b) it
follows that cos j 3 0 since |5\| >0 and |I§| >0.

Proof of (3.15b) is similar. o

By Theorem 2.2 the Metzler matrix is asymptotically
stable (Hurwitz) if and only if there exists a strictly
positive vector 1 =[I;,...,1,], 1, >0, k=1..,n such
that the condition (2.5) is satisfied.

Examples of electrical circuits with Metzler state
matrix A are given in [15].

Theorem 3.3. The angle j between two asymptotically

stable Metzler matrices A =[a; ]T™M,, B= [by 1™,

satisfies the condition 0< j < % .

Proof. From (2.5) it follows that the diagonal entries
a;and by for i =1...,n of asymptotically stable Metzler
matrices A and B are negative. In this case the condition

(3.15a) is satisfied and 0 < j < % .o

Example 3.3. Consider the following two
asymptotically stable Metzler matrices
e -2 17 u é-1 1g
60 -3 g0 -1
Using (3.2), (3.4b) and (3.16) we obtain
20 -l
g, e,
— 1: — 17 _ _
A=€ U B=€"10 (AB)=6
eou eou (3.17)
é .0 é .0
&-30 &-1§
A =14/8] =
and
AB
cosT = (_—_) = _ 5 =0.926 (3.18)
AllB] 1443

This confirms the thesis of Theorem 3.3.
Example 3.4. Find the cosT between asymptotically

stable Metzler matrix A given by (3.16) and the unstable
Metzler matrix

61 1§
B=3 ( (3.19)
60 2y
In this case we obtain
6-21 é1y
_egu
A=¢ U B= ‘?“ (AB)=-7,
909 E} (3.20)
g U 8.0
6-30 &2
—2 —
|A| =14, |B| =6
and
A B -7
cosf=¥=—-—0764 p£f£p (3.21)
|AllB| 146

The angles between two state matrices corresponding
to different choice of the state vectors in linear electrical
circuits have been investigated in [6].

Theorem 3.4

Let ATA"" and BTA" " be n” n real matrices
with nonnegative entries and at least one positive entry:

1) The angle j 5 between the matrices A and B

satisfies the condition

0<f,g< % (3.22a)
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2) Theangle j, . between the matrices A, A",

k =1,2,... satisfies the condition
0<f, . <% for k=0,1,... (3.22b)
Proof. Note that the Hadamard product of

the matrices A=[a;]TA}" and B=[b,JTA]" is

positive

AoB= é g_la b, >0 (3.23)
and from (3.4) we have ]
cosjap >0 and 0<jpp <% (3.24)
since |A|B|>0.
The proof of (3.22b) is similar since AK TA" " for

k=01..o
Remark 3.1. If B= ATA! "then j,, =0.

Theorem 3.5. The angle j between the Metzler

Hurwitz matrix ATM,, and its inverse A satisfies the
condition

0<f< % (3.25)
Proof. From (3.4b) we have
-1
cosT = (AAT) (3.26)
[A[A

By assumption the matrix AT M is Hurwitz and it
satisfies the condition (2.5). The strictly positive vector
I can be chosen as I =AY for cTA" strictly
positive. Taking into account that for the Metzler
Hurwitz matrix A we have - A2 TA" " and from (3.26)
and (2.5) we obtain (3.25) since cosj >0.0

Example 3.5. Consider the Metzler matrix

§—2 1 0 U
_¢ u
A= & 2 -3 1 i (3.27)
g0 1 -3
which is Hutwitz since the condition (3.25) is satisfied for
1 €8 3 1iél 1e6u
_p-l._ L@ ue,u_1é
I=A c-1—§6 6 ue1u e7u' 5.28)
62 2 4fglY 644 '
c=[t 1 1],

Using (3.27), (3.26) and (3.28) we obtain
A=[-2102-3101-3],

2\'1:-%[8316 62224,

R 3.29
(A! A" ) _ix ( )
10
25
(-16+3+12-18+2+2-12) = —0>0
and from (3.29) cosj >0 and 0<]j <P since

2
A&>0.
Example 3.6.Consider the fractional linear electrical
circuit shown in Fig. 1 with given resistances Ry, Ry, R3,

inductances L, L, and source voltages e, e,.

Fig. 1. Electrical circuit.

Using the Kirchhoff’s laws we may write the
equations

: . . d?i;
& = (R +Ry)iy - R, + Ly pren
4o (3.30)
i
R, + Ry)i, - Ry, + L, —%,
=( 3)i; = Ry e
The equations (3.30) can be written in the form
& gl el u ée
daelu- "itBa g (3.31a)
dt* iyl 80 el
where
¢ R +R; R, U el U
¢ [ T
A=¢8 U, B=¢8 0 (3.31b)
€ R, R, +R;U € 110
& — - i 60—y
g L L, € L,

For R, >0,k=12and L; >0, i =1,2 the matrix A
is Metzler Hurwitz matrix and its inverse has the form
A= 1e(R *R)L
Re RsL,
R=Ry(R; +R;) + R;R;.

RiL, 1

(R +R)LE (332
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The angle fA
given by

J>I

(A,
A
(R +

f = arccos

7\\
R)(R, +Ry)
R

e
=arccos i 8 (3.33a)

REzL,  Lou 1
y

REL LA

where

A =R e RE

5 eL
.2 2, 2 52
‘K-l‘zza(RﬁRs)ng +R§°§ﬁ2 + (3330

s s R 4

+69(R1 +R;)L, 02
R g5

In particular case when L; =L, we obtain

2
f ., =arccos

A \KHK*‘ . (3.34)

Let the matrix ATA" " be nonsingular i.e. det A1 0

and A, be its adjoint matrix, then

_ Ag
CdetA’

Theorem 3.6. The angle J between the matrix A

(3.35)

and its inverse matrix A is equal to the angle J

between the matrix A and its adjoint matrix A,

cosf Apt T cost, A, - (3.36)

Proof. Applying Definition 3.2 to the matrices
(A,A™) and (A, A,) and using (3.35a) we obtain

o @R A 9
cosf 1:(A,A'1):8 det Ag
AA Al a-1 _
_AR) o
A~

1 between the matrices A and Alis

Therefore, the angle between the matrices A and
A is equal to the angle between the matrices A and

A, .o

Example 3.8. The inverse matrix of the matrix

-2 11
=6, gl (3.38)
e ~3U
has the form
63 1
‘l:h__le E (3.39)
det A eZ 2{]
Taking into account that
A=[-2 1 2 -3,
Ag=[-3 -1 -2 -2, (3.40)
Fi-¢ 8 111
84 4 2 28
and using (3.4a) we obtain
AR
cosfy o (_'éad)zl (3.41a)
[Al[Al 18
and
AAY 7
cosT :(_’_ ):— (3.41b)

Therefore, we have cosf, ., =cosf, , —and this
confirms Theorem 3.6.

It is well-known that any matrix ATA"" can be
decomposed into the symmetrical part

A+ ATAA

A = TA"" (3.42)
and the asymmetrical (antlsymmetrical) part
A-AT — - -
A = 1A"" (3.43)
such that
A +A =A. (3.44)
Theorem 3.7. The angle
(_ _
fAS’Aa = arccos 'ﬁ‘s = (3.45)

N
between the symmetrical part A, and the asymmetrical

part A, of the matrix A is equal to zero.



6 Tadeusz Kaczorek

Proof. For the matrix

éa; a, a, U
é u
<a,, a a,. -
A - g 21 22 2N l‘jl (346)
el [
¢ {
éanl anz ann u
the symmetrical part has the form
é dp + 3y Ay, +ay, U
¢ u 2 v g U
8 U
E:Eaiz tay a A, ta,, (
A=€ 2 2 2 U (347)
S ! oY
€a, +a a,, +a u
é 1n nl 2n n2 ann U
g 2 2 u
and the asymmetrical part
é 0 &p ~ 8y ay, — 8y U
€ 2 2 U
e 2
(:Bazl -4 0 A — 8y U
A=E 2 2 U (348
1 ! T
¢ (
ganl -, Gy —dy, 0 E
g 2 2 u
Using (3.1), (3.2), (3.47) and (3.48) we obtain
&, tay 933 ayp —ay 9+
2 € 2
+% a, + ay 9% a, —ay 9_'_
£ 2 € 2 3
. . (3.49)
L2 8 ta, o A -3y o,
2 3 2 3

+ﬁ an,n—l + an—l,n an an,n—l - an—l,n

? =0.
; 2 o 2

N -l- O

Therefore, the angle between the symmetrical
and asymmetrical parts of the matrix (3.46) is equal
to zero.

Example 3.9. The symmetrical part of the matrix
(3.38) has the form

CA+AT_é-2 15

7 = 7 3.50
A= 15 -3 (3:50)
and the asymmetrical part
A-AT _¢0 -050
= =3 0. 351
A= 05 0§ (351)

Using (3.50) and (3.51) we obtain
A=[-2 15 15 -3], A,=[0 -05 05 0]
and

]
g

(

|
since (A,A,)=0.

This confirms Theorem 3.7.

) -

fAs, A, = arccos (3.52)

>
>

4. Angles between matrices and their functions
Let f(I) be a scalar function well defined on the

spectrum of the matrix A, i.e. f(I,) has finite values
fork=1,....n.

If the eigenvalues are distinct the matrix function
f (A)TA"" can be written in the form [4, 13]

az.f() (4.1)
k=1
where
Z = ﬁA_—Inlk (4.2)
i -0
it

For general case the formula (4.1) is given in [4,13].
Example 4.1.The characteristic polynomial of the matrix

6-2 1y
A=34 ( (4.3)
62 -3
has the form
det[1,1 A]—I+2 -1 =12+51+4 (4.4
2 -2 1+3 '

and its zeros are I, =-1, I, =-4. Therefore, the
spectrum of the matrix (4.3) is {-1, -4}.

Using (4.2) in particular case for f (A)=e”" and
(4.3) we obtain

CA-LL, 162 1
S T T
(4.5)
CA-LL 161 -1y
“0-n, sk of
2~ N e u
and
(o 14
et = expg ﬂ =ze"+Z,e" =
62 -3
gge't R l(e't - e"”)g (4.6)
& T3° 3 ;
52 1 2 A
e -t -4t -t -4t U
ot -e™) Zet+Ze™l
@3( ) 3 3 #
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Using (3.4a) we may define the angle T between

the matrices A and f(A) as follows.
Definition 4.1.The angle defined by

A (A

f= arccosM 4.7)
QHG

is called the angle between the matrices A and f(A).
In particular case for f(A) = A" we have

A a-l

Jj-= arccos(éé ) . (4.8)
AR

Example 4.2. (Continuation of Example 4.1). Find

the angle between the matrices A™ and A, e™ for (4.3).
In the first case taking into account that for (4.3)

-1
4 62 11 1é3 1y
AT=e, gl TTa6 ol (4.9)
e u e u
and using (3.4b) we obtain
T
A=[-2,1,2,-3] and AL = -E% % % -EE (4.10)
and
7
-1
cost = (A AD - 9,
_1 2 \/—\[ (4.11)
f=67.1°

In the second case taking into account (4.8) and (4.7)
we obtain

/Kt_(fz —t+le—4t,l(e—t e—4t),
g3 3 3
. (4.12)
2, any Lo 2 4l
—(e7 -e™), e+ =T,
3 3 37
and
costT = (A’eAt) =
|K|2 |eAt|
2, 13
3 3 <0, (4.13)

Jﬁ\/l (1072 - 2¢™ +10e™®)

t30, P <f<p

These considerations can be extended to [4,13]:

1) any matrix functions well-defined on the
spectrum of the matrix A ,

2) any two matrix functions well-defined on the
spectrum of the matrix A,

3) any two matrix functions well-defined on the
spectrum of the matrix A and B, respectively.

5. Angles between polynomials
Consider fhe fractional linear system (2.1) with zero

initial conditions. Applying the Laplace transfom L to

ed@x(t)u
(2.1) and taking into account that L éd Xa(t)l] =52 X(s)
é {
we obtain
T(1)=C[I,1 -A""B+D, 1=5* (5.1a)
where
edx(t)u_¥d?
X(s)=Le X8 od X(O) st (5.1b)

0=
e dt a G o dta
All. nonzero entries of (5.1a) are rational function of
=52,
In this section the angles between two polynomials
of fractional linear systems will be defined and their

basic properties will be established.
Consider the polynomials in variable s

p(s)=p, T4 +as+a

(5.2)
A(s) =0 () =bys™ +, 48"+ 4 bs + by
i =01,...

(s)=a,s"+a,s"

with constant coefficients a;,
j=0,1,....m

,n and bj,

Definition 5.1.The scalar

b
(p(s),a(s)) =g p(s)q(s)ds (5.3)

where a, b are given real numbers, is called the scalar
product of the polynomials (5.2).
In particular case if p(s)=q(s) then

b
(P(s), p(s)) = oL p(s))°ds (54)

and

1p(s)] = V/(P(S), P(S))
is the module of the polynomial p(s).
Using (5.3) and (5.5) we may define the angle j

(5.5)

between the polynomials (5.2)
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Definition 5.2.The angle defined by

p(s),q(s)
|p(s)||as)

f=Ff_ _=arccos
P (5.6)

0<f<p

is called the angle J between the polynomials (5.2).

The formula (5.6) can be equivalently written in the
form

_(p(s).q(s))
 Ip@)acs)|
In particular case if p(s)=q(s) then from (5.7) we
have cosf =land ¥=0.
Example 5.1.Find the cosj between the following
polynomials

cost =cosf, (5.7)

p(s)=s?+2s+3and q(s)=2s+1 (5.8)
fora=landb =2
Using (5.3), (5.4), (5.5) and (5.8) we obtain
2
(p(s).a(s)) = p(s)q(s)ds =
1
2
=3(s? +2s +3)(2s +1)ds =
1
2 (5.9)
= §(2s® + 55 +8s + 3)ds =
1
1, 5 2
==s* + 5% +45% +3s| =34.167,
2_2 2 2 2 2
[p(s) =0 p(s)]" ds = 3(s” +2s +3)°ds =
1 1
2
Lot 652 105 =71533
5 3 .
, , (5.10)
laes)] = s[a(s)]” ds = g (4s? + 4s +1)ds =
1 1
4 2
=—s®+2s? +s| =16.333
3 1
and
cosf = (P(s).q(5)) - 34167 _ 0.995. (5.11)
|ps)||a(s)| /34,182
From (5.7) it follows that
cosf, , =cosf, (5.12)
and
cosf_, _, =cosf,, (5.13)

Let us consider the transfer function of fractional
linear system of the form

n(s)
T(s)=—2= 5.14
(s) i) (5.14)
where
n(s)=b,s"+b, _s"t+..+bs+b,, (5.15)
d(s)=s"+a,,s""+..+as+a, (5.16)

The inverse transfer function of (5.14) has the from

_ d(s
T7(s) _d6).
n(s)

From (5.6) applied to (5.14) and (5.17) we have the
following conclusion.
Conclusion 5.1.The angle f , between the

(5.17)

polynomials (5.15) and (5.16) and the angle j; of
(4.14) and f__, of (4.17) satisfy the equalities

1) fo=Tsn (5.18)
2) T = fT_l (5.19)
In particular case for
1
T(s)= % (5.20)
we have
T, =fT_1 =f =T (5.21)

Remark 5.1. Note that if zeros of the polynomials
(5.15) and (5.16) have negative real parts (the polynomials

are asymptotically stable) when the angle fd,n between
the polynomials d(s) and n(s) has the same sign for all
nonnegative a30 and b30 in (5.3) and (5.4). In this

case we may assume for examplea =0and b = 1.
Example 5.1.Find the angle of the transfer function

+
T(s)= n(s) _ 225 4
d(s) s“+4s+3
with the poles S, =-1,8, =-3and zero 2, =-2.
Using (5.4), (5.5) and (5.22) we obtain

(n(s),d(s)) = (‘1](25 +4)(s? +4s+3)ds =

(5.22)

1
=(2s® +125% + 225 +12)ds = 27.5,
0
2 1 )
In(s)|” = 9(2s+4)*ds =
0 (5.23)
1
= §(4s® +165s +16)ds =25.333,
0

1
ld(s)|” =4(s? +4s+3)%ds =
0

1
=5(s* +8s° + 22s? + 24s + 9)ds =30.533
0
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and

_(n(s),d(s)) _ 27,5

" |n@s)|[d(s)] 773,509

Example 5.2. (Continuation of Example 3.6) Consider
the fractional electrical circuit shown in Fig. 3.4 for
Ri=R,=1, R;=2 and L;= L, =1.

In this case the matrices (3.40b) have the forms

cost, »0.988. (5.24)

-3 21 ¢l Ou
A:é 0 B:é 0 (5.25)
§2 =3 g0 1y

As the output y of the electrical circuit we choose
. éiy U
y=i+i,=Cg'j and C=[1 1.  (5.26)
el
The transfer matrix T(s) of the electrical circuit has
the from
T(s)=C[l,s-A]"B=
| 6s+3 -207él 0)
§-2 s+3] 50 1
1

2 +65+5
The angle fT of the transfer function
1

= (5.27)

[s+5 s+5].

s+5

T,(s)= 5>
(9) s +6s+5

(5.28)
is equal to

T =arccosT,(s) = arccosz"%;5 =10,63° (5.29)
o s°+6s+5

since

(n(s),d(s)) = 3(5 +5)(s® + 65 +5)ds = 46.417,
0

1
In(s)[* = o(s +5)2ds =30.333, (5.30)
0

1
|d(s)|" = §(s? + 65 +5)2ds =73.533.
0

6. Concluding remarks

The notions of angles between  matrices and
between polynomials of fractional linear systems and
electrical circuits have been introduced and investigated.
In analysis of angles between state matrices of fractional
linear systems the Hadamard product of two matrices
has been applied and some basic properties of the angles
between matrices of fractional linear systems have been
established (Theorems 3.1-3.6). The angles between
symmetrical and asymmetrical parts of the state matrices

have been defined and have been analyzed (Theorem 3.8).
Next the angles between matrices and their functions
have been also introduced (Definition 4.1). The angles
between two polynomials are defined (Definition 5.2).
Some basic properties of transfer functions of fractional
linear systems are analyzed and some new properties
have been also established. The considerations are
illustrated by examples of fractional linear systems and
linear electrical circuits. The considerations can be
extended to fractional descriptor linear continuous-time
and discrete-time systems.
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KYTHU MI’K MATPULAMHU TA MIXK
MOJIHOMAMM B IPOBOBUX JITHIMHUX
CUCTEMAX TA EJIEKTPUYHUX KOJIAX

Taneym Kauopex

CchopMynb0BaHO MOHATTS KYTiB MK MaTPHUISIMHA Ta MiX
MOJIHOMaMH APOOOBUX JIIHIHHUX CHCTEM Ta CICKTPUYHHX KiJ.
Ilig gac aHami3y KyTiB MiXK MaTpPHLSMH CTaHy APOOOBUX Ji-
HIMHHUX CHCTEM 3aCHOBAaHO HOOYTOK Allamapa 3 ABOX MaTpHIIb.
Po3risHyTO Takok KyTH MK MaTpHLSIMH Ta iX (yHKIII.
JlocnipkeHO KyTH MDK CHMETPUYHOI0 il HECHMETPHYHOIO
YacTMHaMH MaTpullb. [IpoaHanizoBaHO KyTH MK HOJIIHOMaMH
MepefaTHUX MaTpHlb APOOOBHX JIHIHHHX CHCTEM Ta BCTa-
HOBJIEHO iXHi J€sIKi HOBI BJACTUBOCTI.
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