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Abstract.  Synthesis methods of controllers based on the use of frequency characteristics or root hodographs are 
considered classic or traditional. Frequency methods are available in practical applications, and most control systems are designed 
based on various modifications to these methods. A distinctive feature of these methods is the so-called robustness, which means 
that the characteristics of a closed system are insensitive to the minor errors of the model of the real system. This feature is 
significant because of the complexity of constructing an accurate model of the real system, as well as the fact that many systems 
are inherent in all kinds of nonlinearities, which complicate their analysis and synthesis. In recent years, many attempts have been 
made to develop new methods of synthesis, commonly referred to as modern control theory. One synthesis method is like the root 
hodograph method, which allows positioning the poles of the closed-loop transfer function at predetermined points. 

In the article on the basis of information about the desired transient characteristic of the reference, which is obtained on the 
basis of a dynamic neural network, using the Ackerman formula, a procedure for calculating the coefficient matrix, whose 
introduction in the structure of the object model provides the specified dynamics of the process. On the base of the reference 
mathematical model is created the architecture of the corresponding dynamic neural network. During training, there is the target 
function as a numerical sequence that corresponds to the desired transient characteristic of the system, and the input signal is given 
in the form of a numerical sequence that reproduces jump function. Using the values of the weight coefficients obtained in the 
course of learning the neural network, the coefficients of the mathematical model of the reference and the roots of its characteristic 
equation are calculated, with the following calculation using the Ackerman formula of the coefficients of the matrix, whose values 
are entered into the structure of the model ensuring the specified dynamics of the process in it. 
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1. Introduction 

The robots become more sophisticated and 
reliable from year to year. They often are used in the 
different manufacturing operations such as at the 
assembly line and perform a variety of tasks usually 
done by skilled operators. The tasks range from pick and 
place, welding and pointing, to the placement of engine 
blocks into cars. Today’s manufacturing cells are 
designed around the capabilities of robot speed and 
reach, and they are becoming an essential element of 
manufacturing processes. 

Mostly mechatronic as well as robotic systems 
consist of nonlinear elements that are covered by 
complex feedbacks, and the operation of such systems in 
the real world is affected by a variety of noises, 
interferences and other disturbing factors [1]–[3]. It 
significantly limits the use of modern and classical 
control theory when creating controls [4]–[6]. In recent 
decades, management strategies have used theories 
based on the idea of system linearization, which does not 
fully reflect its physical properties, and in some cases, 
even when the dependencies between the inputs and 
outputs of the system are accurately reproduced, their 
use cannot provide adequate control of the system. 
Therefore, artificial neural networks are increasingly 
used in synthesizing control algorithms, which take into 
account the features of the object that the network must 

reproduce, and its training is conducted on the basis of 
the input and output data that characterize the processes 
that take place in the object [7]–[15]. Because neural 
networks are inherently nonlinear, they can be used to 
identify both linear and nonlinear objects, as well as to 
implement control algorithms in such objects. 

In recent years, the synthesis of neural controllers 
to control processes in dynamic objects has been 
performed based on methods based on the use of a root 
hodograph or frequency response [2], [4], [5]. It is 
known, when using a root hodograph synthesis of the 
controller can be done in two ways. In the first case, the 
synthesis is based on the requirements imposed on the 
system operation in transient mode, and the second 
involves the use of system characteristics in the steady-
state. 

One of the peculiarities of the root hodograph 
method is that when used, the controller synthesis is 
performed in the time domain, which requires the use of 
a mathematical model of an object with characteristics 
that are close to the characteristics of a real object, which 
in some cases is difficult to implement. In addition, the 
scope of the root hodograph method is limited by the fact 
that it provides the possibility of location in a given area 
of the complex plane only one pair of poles and in cases 
where the order of the system is higher than the second, 
it is almost impossible to influence the location of the 
other poles. Thus, if these poles in the complex plane 
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occupy positions that do not allow providing the 
specified dynamics of the system, then the synthesis of 
the controller based on the root hodograph method is 
reduced to using the trial and error method. The 
controller synthesis using frequency characteristics is 
based on the Nyquist stability criterion, which allows 
evaluating the stability of a closed system by its 
frequency characteristics when open. For the synthesis of 
the controller using frequency characteristics, the basic 
dynamic parameters of the system must be predefined 
the open system transmission coefficient, phase stability 
or bandwidth, installation time, perturbation compen-
sation efficiency, etc. 

Frequency methods are widely used to synthesize 
controllers and most control systems are designed based 
on various modifications to these methods. When using 
frequency methods, it is possible to provide to a certain 
extent the insensitivity of the characteristics of a closed 
system to changing its parameters, which is essential for 
control systems with pronounced nonlinearities, the 
presence of which significantly complicates the process 
of controller synthesis. 

It should be noted that frequency methods involve 
the transition from the time domain of signal 
representation to the frequency with the subsequent 
procedure of controller synthesis, which significantly 
complicates the possibility of direct estimation of 
temporal characteristics of the system and, as a 
consequence, the choice of effective ways of their 
improvement. 

In recent years, certain methods of synthesis of 
controllers, the implementation of which involves the 
possibility of placing all the poles of the transfer 
function of a closed system at specified points of a 
complex plane, have acquired certain development [6]. 
The use of these methods requires the availability of 
information about object state variables, the 
measurement of which is not always possible due to the 
complexity of the access to them or the absence of 
appropriate measurement converters. In practice, the 
estimation of state variables, whose measurement causes 
significant difficulties, is performed based on data on 
variables that can be directly measured. 

2. Task of the Research  

The goal of the current paper consists of the 
specified dynamics of the process getting based on the 
desired reference transient characteristic which was 
taken from a dynamic neural network. The last may be 
obtained thanks to the Ackermann’s formula using for 
calculating the coefficient matrix, whose introduction in 
the structure of the object model provides the specified 
dynamics of the process. 

3. Formulation of the Problem  

Synthesis of controllers by positioning the poles 
of the transfer function of a system at given points of a 
complex plane implies the presence of its mathematical 
model in state variables, which for a linearized object is 
as follows: 

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t ,

y t Cx t Du t ,

= +

= +

&
      (1) 

where x(t) is a state vector of dimension (n×1) whose 
components are the n-order object state variables; ( )x t&  
is a time derivative of the vector x(t); A is a matrix of 
coefficients with (n×n) dimension; B is the input matrix 
with (n×r) dimension; u(t) is the input vector of 
dimension (r×1) with components as input object 
variables; y(t) is the output vector of dimension (p×1), 
the components of which are the output object variables; 
C is the output matrix with (p×n) dimension; D is the 
bypass matrix that determines the direct link between 
object input and output. In most cases, the matrix D 
elements are equal to zero because the connection 
between inputs and outputs in real physical objects is 
dynamic. Let us consider a control object that is 
described by the following transmitting function: 

( )
n 1 n 2

n 1 n 2 1 0
n n 1 n 2

n 1 n 2 1 0

b S b S ... b S bW s
S a S a S ... a S a

− −
− −

− −
− −

⋅ + ⋅ + + ⋅ +
=

+ ⋅ + ⋅ + + ⋅ +
.    (2) 

For such an object, the equations of state can be 
written as follows 

( )

0 1 2 n 1 n

0 1 0 ... 0 0 0
0 0 1 ... 0 0 0

x t ....................................................... x t ... u t
0 0 0 ... 0 1 0
a a a ... a a 1−

 
 
 
 = +
 
 
 − − − − − 

&  

( ) ( )

0 1 0 ... 0 0 0
0 0 1 ... 0 0 0

................. x t ... u t
0 0 0 ... 0 1 0
a a a ... a a 1

 
 
 
 = +
 
 
  

,     (3) 

( ) [ ] ( )0 1 2 n 2 n 1y t b b b ... b b x t− −= . 
The peculiarity of the coefficient matrix A is that 

all its coefficients, except for coefficients above the main 
diagonal, are equal to zero, and the last raw is filled with 
the coefficients of the characteristic equation with the 
opposite sign. Thus, knowing the matrix of coefficients 
of an object, one can write its characteristic equation. 
Consider a synthesis procedure for a controller based on 
the location of the poles of the closed-loop transfer 
function at given points in the complex plane. It is 
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assumed that the system has one input and one output, 
and the defining signal supplied to its input is equal to 
zero. The control law can then be represented as a 
functional relationship between the state vectors and the 
object input as follows: 

( ) ( )U t f x t .=            (4) 

Let's form a control law for our case in the 
following form: 

( ) [ ]

( )
( )

( )
( ) ( ) ( ) ( )

1

2
1 2 n

n

1 1 2 2 n n

X t

X t
u t K , K ,... K

......
X t

K X t K X t ... K X t K X t ,

 
 
 = − − − × = 
 
  

= − − − − =   

 

where K is the coefficients vector of dimension [1 × n]. 
Substituting (5) into the first equation of system (1), one 
obtains: 

( ) ( ) ( ) ( ) ( ) ( )fx t Ax t BKx t A BK x t A x t= − = − =& , (6) 
where Af is the following matrix of closed-loop 
coefficients: 

f

0 1 1 2 2 3 n 1 n

0 1 0 ... 0
0 0 1 ... 0

A ....................................................................................
0 0 0 1

a K a K a K ... a K−

 
 
 
 =
 
 
 − − − − − − − − 

. (7) 

The characteristic equation of a closed system can be 
written in the following form: 

[ ]

0 1 1 2 n 1 n

SI A BK

S 0 0 ... 0
0 S 0 ... 0
..............................................
0 0 S ... 0
S 0 0 ... S

0 1 ... 0
0 0 ... 0

_ ....................................................
0 0 ... 1

a K a K ... a K−

− + =

 
 
 
 = −
 
 
  






− − − − − −

( ) ( ) ( )
0 1 1 2 n 1 n

n n 1
n 1 n 1 2 0 1

0 1 ... 0
0 0 ... 0

................................................
0 0 ... 1

a K a K ... a K

S a K S ... a K S a K 0.
−

−
−




 =


 
 
 
 
 
 = =
 
 
 + + + 

= + + + + + + + =   

where I is a unitary matrix of dimension [n × n]. 
If considering the conditions of the given process 

dynamics, the roots of the characteristic equation of a 

closed system should acquire values -λ1, -λ2, ..., -λn-1, 
then the desired characteristic equation for such a system 
will be as follows: 

( )
( )( ) ( )

n n 1
n 1 1 0

1 2 n

F s S a S ... a S a

S S ... S 0.

−
−= + + + + =

= + λ + λ + λ =
  (9) 

In accordance with the procedure for the synthesis 
of the controller on the basis of the poles positioning 
method at given points of the complex plane, it is 
necessary to calculate a matrix K, which would ensure 
the equality of the left parts in expressions (8) and (9), 
i.e.: 

( ) ( )
( )

n n 1
n 1 n 1 2

n n 1
0 1 n 1 1 0

S K S ... K S

K S S ... S .

−
−

−
−

+ α + + + α + +

+ α + = + α + + α + α
     (10) 

Equating in (10) the coefficients for equal degrees 
S, one obtains n linear equations with respect to n 
unknowns as follows: 

i 1 i i 1a K− −+ = α           (11) 
the solutions of which are the coefficients of the matrix 
Ki 

i i 1 i 1K a , where i 1,2,..., n.− −= α − =          (12) 
Relations (12) determine the overall solution of 

the problem of synthesis of a system with one input and 
one output on the basis of the poles positioning method 
at the setpoints of the complex plane, but it is necessary 
to ensure the correspondence of the model of the system 
in the canonical form of controllability. Remark, that it 
cannot always be achieved because the state variables of 
the model in the canonical form of control in most cases 
do not correspond to the state variables of the real 
system. Therefore, consequently, they are not those 
variables that determine the physical content of the 
processes that take place in the real system. In addition, 
state variables in the canonical form of control may in 
some cases be unavailable for measurement. Thus, in the 
general case, the calculation of the coefficients of the 
matrix K is based on the transformation of similarity, 
which provides the possibility of transition from a given 
model of any structure to a canonical form of 
controllability, with subsequent carrying out of the 
corresponding mathematical transformations. To 
implement this procedure can be used Ackerman's 
formula [16] in the following form: 

[ ]
( )

1n 2 n 1
c

K 0 0 ... 0 1

B AB ... A B A B A ,
−− −

= ×

 × ×α 
  (13) 

where ( )c Aα  is a characteristic polynomial calculated 
on the basis of the coefficients of the desired 
characteristic equation of the system ( )c Sα , i.e. 

( ) n n 1
c n 1 1 0A A A ... A I,−

−α = + α + + α + α          (14) 

(8) 

(5) 
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where I is a unit matrix. Consider the problem of a 
dynamic neural network designing to reproduce the 
transition characteristic, which is given in the form of a 
numerical sequence. Consider the problem of a dynamic 
neural network creation to reproduce the transient 
characteristic, which is given in the form of a numerical 
sequence. Let us suppose that a physical object or its 
mathematical model in the form of a differential 
equation, which includes input and output quantities and 
their derivatives in time up to the n-th order, is used to 
obtain the desired transient characteristic. Remark that 
the dependence of the output quantities on the input and 
derivatives from the input and output is unambiguous. 
Let us assume that the analytical representation of this 
equation is unknown in advance or known only in 
general form. 

The above assumptions about the differential 
equation make it possible to present it in the general 
form: 

yx (n )(n )F(x,x ,x , ... ,x ,y,y ,y , ... ,y ) 0′ ′′ ′ ′′ = ,   (15) 
where nx and ny is the maximum order of the derivatives 
from the inputs and the outputs, respectively; x,x ,x ,′ ′′  

( )xn..., x  and ( )yny,y ,y , ..., y′ ′′  is the input and output 
vector and its derivatives, accordingly, i.e. 

x

x

x

x x

m
xm m

x

n
11

n

1 n
2 2

2 (n ) n

nS
S S

n

d xdx
dtdtx

dx d xx
x ,   x ,  ...  ,   x  dt dt... ... ...

x dx d x
dt dt

  
  
    
    
    ′= = =     
    

      
  

    

; 

y

y

y

y y

n
yn

n

y

n
11

n

1 n
2 2

2 (n ) n

S n
S S

n

d ydy
dtdty

dy d yy
y ,   y ,  ...  ,   y  dt dt... ... ...

y dy d y
dt dt

                    ′= = =                        

. 

The task is to choose a dynamic neural network 
architecture that, after completing the training procedure, 
with a given degree of accuracy, can reproduce the 
dynamics of the process that meets the desired transient 
response. As a basis, it can be taken a two-layer neural 
network in which the layers are arranged one after the 
other. Obviously, the created neural network should 
provide the ability to solve equation (15), and therefore 
its architecture is determined by the way of solving this 
equation, considering its kind, or other assumptions 
about it. 

Equation (15) includes time derivatives (up to the 
n-th order inclusive), so there must be a mechanism for 
calculating the values of these derivatives based on the 
presented sets of input and output signals. For practical 
implementation of such a mechanism in the created 
neural network it is necessary to provide for the presence 
of several functional units, namely: 

– the unit of derivatives reproduction (dynamic 
part), in which using the delay lines at the inputs of 
neurons of the first layer reproduces the structure of a 
given equation; 

– the unit of implementation of the functional 
equations given by the equation, by which the network 
weights are calculated. 

Let us consider the implementation of neural 
networks for partial cases of equation (15), and where it 
is possible, formulate not only the requirements for the 
architecture of the network but also ways of selecting the 
initial values of its coefficients, if the coefficients of the 
equation are known in advance. 

4. Problem Solving 

For the case where the input and output quantities are 
one-dimensional, the differential equation (15) can be 
represented as: 

y y

y yy y

x x

x xx x

n n 1

n n 1 1 0n n 1

n n 1

n n 1 1 0n n 1

d y d y dya a ... a a y
dtdt dt

d x d x dxb b ... b b x.
dt dt dt

−

− −

−

− −

+ + + + =

= + + + +

     (16) 

Since the values of input and output variables are 
known only at certain intervals t∆ , derivatives can be 
calculated only by approximate formulas. For example, 
for some q-th sample of variables x and y there are 
expressions as following: 

q q q 1dx x x
,

dt t
.  .  .  .  .  .  .  .  .  .  .  .  

−−
=

∆                 (17) 

n 1 2 m m
q q n q 1 n q 2 n q m

n n

n 1 n 1 n
n q n 1 q n

n

d x x C x C x ... C ( 1) x
dt ( t)
... C ( 1) x ( 1) x

,
( t)

− − −

− −
− + −

− + + + − +
=

∆

+ − + −
+

∆

 (18) 

q q q 1dy y y
,

dt t
.  .  .  .  .  .  .  .  .  .  .  .  

−−
=

∆           (19) 

n 1 2 m m
q q n q 1 n q 2 n q m

n n

n 1 n 1 n
n q n 1 q n

n

d y y C y C y ... C ( 1) y ...
dt ( t)
... C ( 1) y ( 1) y

,
( t)

− − −

− −
− + −

− + + + − +
=

∆

+ − + −
+

∆

(20) 
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m
n

n!C ;
m!(n m)!

=
−

     (21) 

Substituting expressions (17)–(21) into equation 
(16), reducing such terms and dividing by a factor of a 
variable qy , the equation is obtained: 

y y

x x

q 1 q 1 2 q 2 n q n

0 q 1 q 1 2 q 2 n q n

y y y ... y

x x x ... x ,
− − −

− − −

+ α + α + + +α =

= β + β + β + + β
       (22) 

By solving relatively to value qy , it can be 

obtained: 

x x

y y

q 0 q 1 q 1 2 q 2 n q n

1 q 1 2 q 2 n q n

y x x x ... x

( y y ... y ).
− − −

− − −

= β + β + β + + β −

− α + α + + +α
 (23) 

Equation (23) uniquely defines the architecture of 
a neural network on a single neuron with a linear 
activation function, which can be represented [17]–[19] 
as a recurrent digital filter (Fig. 1). From the foregoing 
considerations, it follows that in the simplest case, to 
reproduce a linear differential equation with constant 
coefficients, the neural network can be implemented as a 
single neuron, the input of which is the current value of 
the input value and at least, than nx of its values at 
previous samples, as well as not less than ny of its 
previous values of the output value. Here there is the 
order of the input variable equal to nx and the order of 
the output variable equal to ny . Consider the procedure 
for constructing a neural network for the case where the 
differential equation looks like: 

1 0

2

E E E2
d y dya a y b x.
dt dt

+ + =   (24) 

There is created the model for equation (24) 
solving in the Simulink environment [20] (Fig. 2). 
Let us reduce the equation (24) to a discrete form, using 
expressions (17)–(21) to approximate. To do this, by 
presenting the first and second derivatives of the original 
variable in the form: 

q q q 1dy y y
,

dt t
−−

=
∆

   (25) 

2
q q 1 q 2

2 2

y 2y yd y ,
dt t

− −− +
=

∆
         (26) 

and by substituting expressions (25), (26) in the equation 
(24), there is obtained the following expression: 

1

1 0

q q 1 q 2 E q

2 2
E q 1 E q E q

y 2y y a t y

a t y a t y b t x .
− −

−

− + + ∆ −

− ∆ + ∆ = ∆
  (27) 

Grouping in the expression (27) the additives at 
the arguments q q 1 q 2y , y , y− −  and multiplying both parts 

of the obtained equation by ( )0 1

2
E E1 a t a t 1∆ + ∆ + , 

there is obtained the following: 

0 1

1

0 1

0 1

2
E

q q2
E E

E
q 12

E E

q 22
E E

b ty x
a t a t 1

a t 2
y

a t a t 1

1 y ,
a t a t 1

−

−

∆
= +

∆ + ∆ +

∆ +
+ −

∆ + ∆ +

−
∆ + ∆ +

                 (28) 

 

α

0β

xnβ

1β

2β

z1

z1

z1

1α
1YGain

2α
2YGain

z1

z1

z1

xq yq

Delay1YUnit

Delay2YUnit

DelayNyYUnit

Delay1XUnit

Delay2XUnit

DelayNxXUnit

YGainNy

XGainNx

XGain0

XGain1

XGain2

Nx

- ny

-

-

+

+

+

+

+

+

+

yq-2

yq-1

ynqy −

xnqx −

1qx −

2qx −

Ny

...

...

 
 

Fig. 1. Scheme for solving of the difference equation (9) 
 

and using the following notation: 

0 1

2
E

11 2
E E

b tW
a t a t 1

∆
=

∆ + ∆ +
,      (29) 

1

0 1

E
12 2

E E

a t 2
W

a t a t 1
∆ +

=
∆ + ∆ +

,       (30) 

0 1

13 2
E E

1W
a t a t 1

= −
∆ + ∆ +

,     (31) 

It was obtained as follows: 

q 11 q 12 q 1 13 q 2y W x W y W y ,− −= + +            (32) 

which is the equation of a neural network with a linear 
activation function. 

The equation (32) corresponds with a certain 
scheme of the neural network (Fig. 3). Thus, if the values 
of the coefficients of the differential equation are known, 
then the transition to the corresponding neural network 
can be carried out using relations (17)–(21). After 
carrying out the corresponding mathematical transfor-
mations, it will give approximate values of the 
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coefficients that can be used in the construction of the 
digital filter. These values will be the initial coefficients 
for the network being created. The ability of the neural 
network to learn allows, based on the desired transient 
characteristic of the system to refine the values of these 
coefficients or to set the values of unknown coefficients 
after arbitrary selection of their initial values. This 
procedure is based on a training numerical sequence 
which is used as an expected signal. 
 

 
 

Fig. 2. Model for solving equation (10)  
 

 
Fig. 3. A neural network scheme  

for solving the second-order equations 
 

Solving the system of equations (29)–(31) with 
respect to unknown variables 

0 1E E Eb , a and  a , it is 

possible to obtain the relation as follow: 

11
E 2

13

Wb ,
W T

= −       (33) 

0

12 13
E 2

13

W W 1a ,
W T
+ −

=     (34) 

1

12 13
E

13

W 2Wa .
W T
+

= −      (35) 

Above mentioned variables provide the ability to 
calculate linear differential equation coefficients whose 
solution at the jumping action of the input variable 
corresponds to the desired transient response that was 
used as the expected signal when learning a dynamic 
neural network. 

Thus, by defining the expected signal for training 
the neural network in the form of the desired transient 
characteristic of the system and selecting on the basis of 

information about the object the architecture of the 
corresponding linear dynamic neural network, it is 
possible to determine in the course of its learning the 
weighting factors. Using transformations (33)–(35) the 
coefficients of the linear differential equation are 
calculated, the solution of which reproduces the desired 
process dynamics in the system. The presence of infor-
mation about the coefficients of the linear differential 
equation, which in our case can be used as a model of 
the reference, provides for the possibility of calculating 
the roots of the corresponding characteristic equation 
and thereby determining the position of these roots in the 
complex plane. 

Let us consider the problem of synthesizing a control 
system using the method of positioning poles at given 
points of a complex plane for a second-order object. If 
taking into account the conditions of the given dynamics of 
the process in the system, the roots of its characteristic 
equation must take the value 1 2-λ , -λ , then the charac-
teristic equation for such a system has the form: 

2
1 2 1 2 1 2F(S) (S )(S ) S ( )S 0;= + λ + λ = + λ +λ + λ λ =  (36) 

By setting an object model with a transfer 
function in the form as follow: 

2
1 0

X(S) 1W(S) ,
U(S) S a S a

= =
+ +

       (37) 

bringing it to the canonical form of control: 

1 1

0 1 22

x 0 1 0x
u

a a x 1x

       
  = × + ×     − −      

&

&
,      (38) 

and using the following notation: 
1

2

x
x ;

x

 
 =
  

&
&

& 0 1

0 1
A ;

a a
 

=  − − 
1

2

x
x ;

x
 

=  
 

 
0

B ;
1

 
=  

 
  (39) 

let us present the equation (37) as follows 
x Ax Bu;= +&              (40) 

4.1. Ackermann’s Approach Application 

Then, in our case, Ackermann’s formula [16], [21] 
looks like: 

1 2
1 2 1 2K [0 1] [B  AB] [A (λ λ )A λ λ I];−= × × + + +   (41) 

To calculate the coefficients K, it is necessary to 
make a series of transformations. Let us write the 
characteristic polynomial of the system in matrix form 
using the coefficients of the desired characteristic 
equation (36) as follows 

2
c 1 2 1 2

1 2 0 1 2 1

1 1 2 0 1 1 2 1 0 1 2

(A) A (λ λ )A λ λ I
λ λ a λ λ a

,
[a (λ λ )]a [a (λ λ )]a a λ λ

α = + + + =

− + − 
=  + + − 

   (42) 

where I is a unitary matrix. Having defined the following 
matrix:  

11 a 1
[B  AB] ,

1 0
−  

=  
 

     (43) 
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and substituting equations (42), (43) into the expression 
(41), there is obtained an expression for calculating the 
matrix of coefficients K: 

1

1 2 0 1 2 1

1 1 2 0 1 1 2 1 0 1 2

1 2 0 1 2 1

a 1
K [0  1]

1 0
λ λ a λ λ a

[a (λ λ )]a [a (λ λ )]a a λ λ
[λ λ a λ λ a ].

 
= × 

 
− + − 

× = + + − 
= − + −

    (44) 

Thus, the final expressions for calculating the 
coefficients K1 and K2 are as follows: 

1 1 2 0K λ λ a ;= −                (45) 

2 1 2 1K λ λ a .= + −               (46) 
Summing the coefficients K1 and K2 with the 

corresponding values of the coefficients a1 and a0 of the 
characteristic equation of the object allows correcting the 
system in the direction of approximation of its transient 
characteristic to the transient characteristic of the reference. 
In practice, the procedure for determining the coefficient 
matrix K on the basis of the desired transition characteristic 
using a dynamic neural network is carried out in two stages. 
In the first stage, based on the features of the construction 
(structure) of the mathematical model of the object, the 
architecture of the corresponding dynamic neural network is 
created and trained. Here the objective target is a numerical 
sequence that corresponds to the desired transient 
characteristic of the system, and the input signal is given in 
the form of a numerical sequence, which reproduces the 
step function. In the second stage, using the values of the 
weighting coefficients obtained in the learning process of 
the neural network, the coefficients of the mathematical 
model of the reference and the roots of its characteristic 
equation are calculated, followed by the calculation of the 
coefficients of the matrix K. 

4.2. Dynamic System Simulation 

In such a way was created (Fig. 3) a block scheme 
of a dynamic neural network, whose weight coefficients 
were used to calculate the coefficients of a mathematical 
model of the reference with the desired transient 
characteristic at the training process completed. Network 
training was based on the identification of a dynamic 
object using the Levenberg-Marquardt algorithm [19]. 
The network was trained using the Neural Network 
packet offline. The input for training the network was 
given in the form of a numerical sequence that 
corresponded to the step function, and the expected 
output signal was specified by a sequence of numbers 
that reproduced the desired transient characteristic of the 
system. It was observed the dynamics of the learning 
process of the neural network in the form of dependence 
of the target function, given in the quadratic represen-

tation 
N

2
k k

k 1

E 0.5 (y t ) ,
=

= −∑ versus the number of training 

cycles (Fig. 4, a). 

 
а 

 
b 

Fig. 4. Dynamics of the neural network learning – (a),  
the output signals of the reference (1) and the adjusted  

object (2) – comparison – (b) 
 

 
 

Fig. 5. Reference and adjustment models  
of the controlled object 
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On the basis of the values of the weight coe-
fficients W11, W12, W13 obtained in the neural network 
training process, the coefficients 

0 0E E Eb , a ,b  of the ma-

thematical model of the reference were calculated using 
the equations (33)–(35). Using the mathematical model 
of the object with the given values of its coefficients, as 
well as the coefficients K1 and K2 were calculated based 
on the results of the neural network learning using 
Ackermann's formula. Its implementation into the 
structure of the object provided the identity of its 
transition characteristic with ones corresponded to the 
reference. It allows obtaining the mathematical models of 
the reference and the adjusted control object (Fig. 4, b) by 
the implementation of corrected coefficients K1 and K2 
(Fig. 5). 

The output signals of the reference and the 
adjusted object refer while acting on the inputs of the 
step signal. 

5. Conclusions 
On contrary to the known synthesis methods 

based on the use of frequency characteristics or root 
hodograph the proposed Ackermann’s formula 
application guarantees the desired transient function 
obtain. The considered approach was realized according 
to the results of the neural network learning by using 
Ackermann's formula. The latter is based on the 
transformation of similarity, which translates a given 
model of an arbitrary structure into a canonical form of 
control. Such a procedure simplifies the determination of 
the desired elements of the matrix K. Comparison of the 
output signals of the reference and the adjusted objects 
simultaneously activated by step signal confirms our 
assumption about the expediency of the object model 
correction by the coefficients K1 and K2.  

The implementation of the corrective coefficients 
which were obtained into the object dynamic model 
ensures that the processes in the models of the reference 
and the adjusted objects are almost completely identical. 
The value of the RMS error in the modeling of the 
system was equal to 31.87 10−⋅ . It indicates the high 
efficiency of the proposed algorithm of the object model 
improvement. 
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