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Always actual tasks of obtaining and processing experimental results in complex systems. 
Random obstacles (errors), measurement errors, imperfections and limitations of mathematical 
models and data processing algorithms can change the appearance of the distribution and lead to 
incorrect use of algorithms, for example, as is the case with Kalman filtering in control systems. 
Complex methods for the identification of distribution laws require the study of quantum 
systems, natural phenomena, environmental, biological, etc. processes, which are characterized 
by the presence of singularities and multimodality of distributions. Therefore, it is often not 
recommended to apply separate distribution laws to simulate probabilistic experimental data 
distributions, but a generalized distribution as a single statistical system, which known 
distributions include as individual partial cases. Thus, the generalized gamma distribution 
includes Rayleigh, Maxwell, Weibull, Levy, Hi-Square distributions, which are widely used in 
applied problems associated with statistical methods of physical processes research, remote 
sensing, in the theory of reliability, for describing the dispersion composition of particles 
fragmentation and calculation of the efficiency of phase separation in gas-liquid streams. 

 
 

Introduction 

Always actual tasks of obtaining and processing experimental results in complex systems. 
Random obstacles (errors), measurement errors, imperfections and limitations of mathematical 
models and data processing algorithms can change the appearance of the distribution and lead to 
incorrect use of algorithms, for example, as is the case with Kalman filtering in control systems. 
Complex methods for the identification of distribution laws require the study of quantum systems, 
natural phenomena, environmental, biological, etc. processes, which are characterized by the 
presence of singularities and multimodality of distributions. Therefore, it is often not recommended 
to apply separate distribution laws to simulate probabilistic experimental data distributions, but a 
generalized distribution as a single statistical system, which known distributions include as 
individual partial cases. Thus, the generalized gamma distribution includes Rayleigh, Maxwell, 
Weibull, Levy, Hi-Square distributions, which are widely used in applied problems associated with 
statistical methods of physical processes research, remote sensing, in the theory of reliability, for 
describing the dispersion composition of particles fragmentation and calculation of the efficiency of 
phase separation in gas-liquid streams [1–3].  

Using Erlang's distribution, imitation models of processes are created, the duration of which can be 
represented as the sum of elementary sequential components distributed in exponential law. By distributing 
the Relay, they simulate a change in the amplitude of the radio signals and estimate the random deviation 
from the point on the plane that is not co-ordinating with each other. The distribution of Rice is related to 
the statistics of radio frequency propagation in a multichannel conductor, which is used to process magnet 
resonance imaging data. 
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Widespread use has been made of generalized distributions. A generalized index distribution is a 
scalable mixture of normal distributions, and is therefore considered as the boundary for random amounts 
of statistics constructed from random volumes [4–5]. The generalization of the normal distribution in the 
form of a superposition of the normal distribution of Gauss and of the exponential distribution of Laplace 
allows us to map not only the diversity of statistical distributions, but also without checking the numerous 
hypotheses according to the criteria for approval to make the selection of the BB sample to a certain 
distribution law. The application of generalized divisions in aeronautics allows us to obtain a reliable 
estimate of errors in determining the location of a point on a plane and to make a probabilistic prediction of 
liquid events due to the presence of distribution tails. 

In statistical simulation, they work either with random sample sizes (ABB) (abbreviation RV), or 
with experimental data, or with Monte Carlo simulation results. Therefore, for constructing models on the 
basis of the statistical analysis of the BB, the minimum of the basic provisions of the probability theory 
includes the estimation of the probability of the event, the function of distribution of density ( )Xf x  
probabilities, its parameters, and the connection between the BB. Function ( )Xf x  – is integral and has a 
definition area ( )D f  – the whole number axis, except perhaps a counted set (coutable set) of points where 
density ( )Xf x  may not exist; change area ( ) [0; ) 0 ( )XE f f x= +¥ Þ £ á+¥ . In many practical 
problems, the distribution density itself is not of interest, but the integral of the product of this density on a 
certain function. These operations in the theory of probabilities have special notations and names and allow 
us to calculate the important characteristics of the BB as the position of the center of scattering as the mean 
value of the distribution (average, center of gravity) XE ( Xm  or average X ) and the parameter of the shape 

of the curve itself: 2
X XDs = ( Xs >0). 

If the probability theory uses the method of moments to estimate the distribution parameters, then 
for such distributions as normal, exponential, trapezoidal, etc., the notion of quantitative characteristics of 
the BB as the mean, variance, mean square deviation deviation (abbreviation SD) and others. But the 
method of moments is valid only for those distributions for which there are moments, that is, the 
corresponding integrals do not run out. 

A more universal concept is the distribution center, which is defined as the center of gravity 
distribution or 50 % quantile. The center of gravity of the distribution of BB is a mechanical analogue of 
mathematical hope, assuming that the probabilities of values are the masses of points. In physics, based on 
the model of the center of gravity, it is substantiated that an arbitrary body in an uncertain state tries to take 
an equilibrium state. Similarly, an arbitrary BB, subject to a significant amount of measurements, goes to 
its equilibrium (in the sense of the mean) – the mathematical expectation. Such an approach only requires 
the existence of the zero order and the distribution width. For a symmetric distribution, as a standard 
(normal), the center of gravity coincides with the fashion. However, unlike fashion, the concept of the 
center of gravity distribution is legitimate for all distributions. So, for the Cauchy distribution there is no 
mathematical expectation, then the concept of the center of gravity of the distribution curve for it is lawful. 
There is no fashion for even distribution. Mathematical expectation XE (or [ ]M X ) (mean) Xm  – This is a 
description of the situation, and the dispersion (variance of distribution) XD  є is a characteristic of 

scattering*). An integral value of the square root X XDs = + , describes (the standart deviation 
(abbreviation SD)).   

                                                 
* In probability theory, the variance is a measure of scattering from the mean, whereas in mathematical 

statistics, it characterizes the degree of scattering of the quantitative values of the statistical sample relative 
to the average – the matrix of the expectation of the square of the deviation of the random variable from its 
mathematical expectation. 
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The dispersion characterizes scattering in relation to its mathematical expectation. It connects 
the first and second initial moments and characterizes the intensity of the fluctuations, so the case 

0XD =  has no physical content. If the second initial moment characterizes the distribution of BB in 
relation to the origin of the coordinates, then the variance is relative to the mean value. From the 
standpoint of physical interpretation, the variance for a deterministic quantity is absent, although in 
reality the second initial moment is not zero at the same time. Indeed, the deterministic value is 
located at a certain distance relative to the origin of the coordinate, which is not equal to zero, so the 
second starting point is different from zero. 

The dispersion has the dimension of its square. This is not very convenient for simulating 
physical processes, therefore, another scattering  parameter Xs  is introduced. For example, in the 
electric circuits (circuits), the dispersion is preferably related to the average power emitted by the 
active electric resistance of the variable component of the applied electric voltage or electric current 
flowing through this resistance. Then the square root of the dispersion in this case will correspond 
to the displays of a voltmeter or an ammeter, if by the condenser, the component of the electrical 
signal has been eliminated. 

Parameter Xs  in science and technology is the unit of expected or measured scattering of 
explosives. Probability of scatter within the range Xs± : 

 ( )X Xxs sR - £ £ + =0.63.      (1) 
In military calculations, scattering x is often modeled in units XX  – this is such a value for which 

the probability of the value of BB x   from the middle XX  equals  
( ) 0.5X XxR -X £ £ +X = .      (2) 

In this case, all possible range of scattering values is divided into two equal parts corresponding to 
the probabilities of “hit” and “failure”. Values XX and Xs  are linked by a relationship: XX = 0.675 Xs . 
Accordingly, confidence intervals of deviations x , for which probability ( ) 0.99xR ñ , equals 3 Xs , or 4 XX  

( 3 3 ) 0.997X Xxs sR - £ £ + =  or ( 4 4 ) 0.993X XxR - X £ £ + X = .                             (3) 
Nonlinear distributions are still accepted to characterize the coefficients of sloping (coeffіcient of 

skewness)  

3
3/2 3/2

2

3th moment about the mean
(variance)kS m

m
= =      (4) 

and steepness (coeffіcient of kurtosis or coefficient of excess.): 

 4
2 2

2

4th moment about the mean
(variance)kE m

m
= = .    (5) 

Relation 

 X
X

X

V
m
s

=  ,      (6) 

characterizes the variation of the values of the BB, which is called the coefficient of variation and is 
considered only if Xm >0.  The greater its value, the greater the variance. The coefficient of variation 
depends on the “start time” and is convenient especially for the exponential distribution. For an 
exponential distribution, the coefficient (6) does not depend on its parameter and is always equal to one. 
The coefficient of VV variation is a relative measure of fluctuations, which characterizes the spread in 
relative units, while the mean square deviation is in absolute terms and is used to estimate the SKV of the 
mathematical expectation. 
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An important stage of statistical simulation is related to the direct and inverse transformation of 
random physical data, as a quadratic type. So, on the transformation of the type 

2( )g X Y Xa= = .     (7) 
The principle of the operation of optoelectronic transducers [11], speckle-interferometers [12], is 

based on the Monte Carlo method [13], is used in the theory of diffraction [14], and others. By physical 
nature, this type of signal converters are quadratic detectors, in which an output is obtained from the signal 

2aX   at the input X . The nonlinear transformation of a quadratic type plays an important role in quantum 
physics [24], where, due to the limitation of the technical capabilities of the experiment to the principle of 
uncertainty 

 
22 2 2

* *2 2
kE

m m a
p

d
æ öæ ö= = ç ÷ç ÷

è øè ø

h h ,      (8) 

random restrictions of the spatial motion of a quantum particle are accompanied by a fluctuation of the 

pulse by the amplitude 
a
h .  

Reversed transformation(7) 
 1( )g Y Y Xb- = = ,      (9) 

allows you to find speed with the known kinetic effect – the presence of energy in the moving body 
2 W
m

J = , the strength of the current in the manifestation of the thermal effect – the motion of 

the carriers in a medium with resistance 1I
R

= R , and others. It is possible to infer other types of 

direct and inverse transformations of random variables (BB), trigonometric, such as, for example, a 
functional connection between the parameters of the oscillatory oscillator. Depending on the setting 
of the task, they are direct sin ,cosX X   and reversed 1 1arcsin sin ,arccos cosX X X X- -= =  
trigonometric transformations. 

A direct square transform of type (7) was studied in detail see, for example, [10–17], but only in 
terms of constructing the probability density distribution function ( )Yf y , whereas the laws of the inverse 
to him were studied less intensively. The author [18] tried to solve such a problem, proposing for this a 
scheme of so-called transformation of indices in solutions of the dispersion equation. As shown in [19], the 
author's approach [18] turned out to be false. Therefore, for practical purposes, such studies are also 
relevant in the future. This work is devoted to the algorithm of the correct application of direct and inverse 
transformation of explosives in a probabilistic-statistical experiment. 

 
Algorithm for working out and discussion of results 

First of all, let us draw attention to some of the problems that may be accompanied by statistical 
averaging of physical quantities. The function is valid, must satisfy all axioms of probability. Often, 
mathematical hope XE  ВВ x  call it the mean value X  and it is calculated as an integral: 

0

( )X XX E xf x dx
+¥

= = ò .     (10) 

If the integral (10) is divergent, then there is no mathematical hope. In it, the boundaries of 
integration cover a semi-limited interval (0; )+¥ , since the physical values of the negative absolute values 
are not taken into account. 
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Fig. 1 
 
Schematically, this is depicted in Fig. 1 (a) for the case ВВ X  with probability Gauss density 

( )Xf x . 

( )
2

2
22 2

( )1 1( ) exp exp ( )
22 2

X
X X

XX X

x mf x p x m
sps ps

æ ö-
= - = - -ç ÷

è ø
,                        (11) 

which is characterized by average X XE m=  and dispersion 2
X XD s=  ( 2( ; )X XN m s -  Distribution with 

mean square deviation (MSD) Xs ). 
Let`s apply to ВВ X  with distribution (11) linear transformation   

( )g Y Y aX b= = + ,     (12) 
So we get ВВ Y  with probability density distribution function ( )Yf y .  
We substantiate the analytic form of the function ( )Yf y . 
By definition [11], the function ( )Yf y  The transformed BB is calculated by the formula 

1 1( ) ( ) ( ( ))Y X
df y g x f g x
dy

- -= ,     (13) 

where 
1( ) y bg x x

a
- -

= =  ,     (16) 

the function reversed to (11) transformation, the module of the derivative from which is equal to: 

 1 1( )d g x
dy a

- = .     (15) 

Substituting (14) into formula (10), we get that function ( )Yf y  looks like: 

( )
2

2
22 2

1 1 1 1( ) exp exp [ ]
2 2

Y X X

X X

y b pf y p m y b am
a a a aps ps

æ ö-æ ö æ ö= - - = - - +ç ÷ç ÷ ç ÷ç ÷è ø è øè ø
.            (16) 

Consequently, the linear transformation (11) does not change the form of the distribution of the 
probability density ( )Xf x  and distribution (16) ВВ Y  is subject to Gaussian, but with an altered 
coordinate of the extremum  

[ ]Xy b am= + .  
Having selected the displaced position of the extremum as the starting point in the centered system, 

the integral (10) will look like: 

( )Y YY E yf y dy
+¥

-¥

= = ò                                                                     (17) 

with an infinite two-sided interval of values of the integration variable ( ; )-¥ +¥ . 
We draw attention to the possible problem of incorrect application of mathematical transformation 

in the statistical averaging of random variables. Yes, let the sample be obtained by transforming the 
explosives into a fractional law 

( )h x X= .      (18) 

0

X¥+Î0x

),()( XXmNxf s=

Xmx= 0

x

),()( XXmNxf s=

Xmx=
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If you make a formal replacement ( )2
x x= ,so square average ( )2

x can be calculated as integral 

( )2
( )XX x xf x dx

+¥

-¥

= = ò .     (19) 

Since the integral function is odd, and the limits of integration are symmetric, then the integral (15) 
is zero. The resulting result is incorrect, so this task will also be given attention. 

Consider another example. Let the statistical analysis undergo fluctuations of the harmonic 
oscillator. If at the initial moment the oscillator was in a state of stable equilibrium and had a speed other 
than zero, then in the absence of disparative processes in the system, the amplitude of the deviation x is 
described by the function 0 sinx x j= .    

Let us assume that the fluctuations are amplitudes and the random variable X is subject to a uniform 
distribution with probability density 

0

1( )Xf x
x

=  .       (20) 

Calculating the dispersion of the phase 

 ( )22DF = F - F .     (21) 

To calculate statistical averages F  and square 2F  

    2 2( ) ; ( )f d f dj j j j j j
¥ ¥

F F
-¥ -¥

F = F =ò ò ,    (22) 

it is necessary to justify the integration limits in (22) and the analytic form of the probability density 
distribution function ( )f jF . 

We perform transformation of ВВ F  

 1

0 0

( ) arcsin sinX Xg X
x x

-F = = = ,    (23) 

back to which looks 
1

0( ) sinX g X x-= = F ,     (24) 
The derivative function module 0 sinx x j=  equals 

1
0

0

sin | cos |d x x
d x

j
j

- = ,     (25) 

So the function ( )f jF  will looks like 
( ) | cos |f j jF = .      (26) 

Limited range of extreme values 0 0x x x- £ £  The amplitude of the deviation of the oscillator from 
the equilibrium position, according to (20), imposes a restriction on the phase change interval: 

2 2
p p

j- £ £ + .      (27) 

Therefore integrating parts (22)  
/2 /2

/2 /2

/2 /2
/2 /2

/2 /22
/22 2 2

/2
/2 /2

| cos |
2 | cos | 2 2 | sin | 2 | sin | 2 | cos | 0,

| sin |

| sin |
2 | sin | 2 2 | sin | 4 | sin | 0.

2 | sin |

u d d
d d

du d

u d d
d d

du d

p p
p p

p p
p p

p p
p

p
p p

j n j j
j j j j j j j j j

j n j

j n j j
j j j j j j j j

j j n j

- -
- -

-
- -

= =
F = = = - = - =

= =

= =
F = = = - =

= =

ò ò

ò ò
 (28) 

We assume that the phase dispersion equals 
 2 0 0 0DF = F - F = - = .    (29) 
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The result is incorrect. The equality of zero (29) contradicts the very physical nature of the 
dispersion, as the intensity of fluctuations. In addition, the Monte Carlo statistical modeling process 
is accompanied by an estimation of SQU. Therefore, the variance can not accept negative values, 
and therefore can be used as an objective characteristic of the degree of intensity of fluctuations. 

The equation of quadratic transformation (7) in the range of values y <0 ,  
it does not have the actual solutions and the density of probabilities ( )Yf y =0. In region y ³ 0, 

probability density ( ) 0Yf y ¹  and equation (1) has two roots:   

1

2

/ , 0,

/ , 0.

X Y х

X Y х

a

a

= - á

= + ñ
     (30) 

In the domain of the monotonicity of function (1), a cumulative probability correlates with the 
relation:  

 2( ) ( ) ( ) ( ) ( )Y X XF y X y Y X y F y F y= R £ = R - £ £ = - - .  (31) 
From where function ( )Yf y  is obtained by differentiating the expression (31): 

 1 1 1 1( )
2 2Y X X

y yf y f f
y ya aa a

æ ö æ ö
= + + -ç ÷ ç ÷ç ÷ ç ÷

è ø è ø
.   (32) 

Here it is taken into account that in the range of values of the argument ( ,0)-¥ ,  
the inverse function and the first derivative have the appearance:  

1 1( )g y y
a

- = -  і 1 1 1( )
2

d g y
dy ya

- = - ,    (33) 

But in region (0, )+¥   

1 1( )g y y
a

- = +   і   1 1 1( )
2

d g y
dy ya

- = + .     (34) 

Therefore, for strictly monotonic functions, the probability density is calculated by the formula (13). 
The dispersion of the transformed BB by law (29) is defined as: 

( ) ( )( )2 22

2 2 22 2

( ) 2 ( )  

( ) ( ) 2 ( ) ( ) 2 .

Y Y Y

Y Y Y Y

D y Y f y dy y Y yY f y dy

y f y dy Y f y dy Y yf y dy Y Y f y dy Y

¥ ¥

-¥ -¥

¥ ¥ ¥ ¥

-¥ -¥ -¥ -¥

= - = + - =

= + - = + -

ò ò

ò ò ò ò
           (35) 

To substantiate the final analytical form (35), we need to specify the explicit type of the distribution 
of the IV, which is subjected to transformation. 

A case of a uniform distribution of the original random variable X . 
Let VV be distributed by law (16). Check the condition of normalization:  

 
0

0

0
0 0 00

1 1 1( ) 1
x

x
Xf x dx dx dx x

x x x

¥ ¥

-¥ -¥

= = = =ò ò ò .    (36) 

Integration boundaries are adjusted to the interval 0[0; ]x   changes in the absolute value of the amplitude, 
so the dispersion of the output BB will be equal: 

02 2 2 2 22 2 2

0

( ) 2 2
x

X XD X X f x dx X X X X X X= + - = + - = -ò .  (37) 

The equation (37) is valid for statistically independent ВВ* [11]. 

                                                 
* For independent ВВ W  cavariation equals 0 [11]. The correlation coefficient of two BBs can be zero, even 

if the BBs are not independent. On the contrary, if the correlation coefficient is different from zero, then two BB`s 
can not be independent [20–22]. 
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 Calculating average X  і 2X : 
0

0 0
2

2 2 2 30 0
0 0

0 00 0

1 1( ) , ( ) .
2 2 3 3

x
x x

X X
x xX x f x dx x X x f x dx x

x x

¥

= = = = = =ò ò   (38) 

So dispertion  (37) equals: 

 
2 2 2

22 0 0 0

3 4 12X
x x xD X X= - = - = >0,    (39) 

which is consistent with [11].  
Using formulas (32)–(34), we set the analytic form of the function ( )Yf y . If we take into account 

that random changes are considered for absolute values x, then (30) has only one root 1 /X Y a= + , so 

0

1 1 1( )
2 2Y X

yf y f
y x yaa a

æ ö
= + =ç ÷ç ÷

è ø
.                                          (40) 

Note that the function (40) is nonlinear, therefore, in contrast to the linear transformation (12), 
changes the type of distribution of BB [12]. 

Let's check for the distribution (40) of the normalization condition:  

 

22 00

0
00 0 00

1 2 1 1
2

xx dy y x
x y x x

aa

a
a a a

= = =ò .   (41) 

Define the boundaries of integration: 

 2
2

0 0

0, 0,1
, .

x y
y x x y

x x y x
a

a a

= =ìï= Þ = Þ í
= =ïî

   (42) 

 

fX x( )

fW w( )

fY y( )

x w, y, 

        

 
   а    

        b 
  

 
2w+2w-

x

w
2)( xxgw ==

g x( )

g_inv x( )

x

)(_
)(1

xinvg
xxg

=
±=-

 
 

   а            b 
Fig. 2 

 
So average Y  and 2Y  calculating as integrals: 

2 2
0 0 2

0

2 2
0 0 2

0

2
0 00

0 00 0 0 0

2
2 3/2 5/2 4

00
0 00 0 0

1 1 2 1 1 ,
32 2 6 3

1 1 2 1 ,
52 2 2 5

x x
x

x x
x

yY dy ydy y x x
x y x x x

yY dy y dy y x
x y x x

a a
a

a a
a

a a
a a a a

a
a a a

= = = = =

= = = =
×

ò ò

ò ò
  (43) 

And dispersion (35) will be: 
2

22 4 4
0 0 0

1 1 1
5 3 30YD Y Y x x xa a aæ ö= - = - =ç ÷

è ø
>0.    (44) 
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In the literature, for example [10–12], the quadratic transformations of type (7) were analyzed, taking 
into account both roots of the function (30). 

Case of uneven distribution of output BB.  
Let BB X is in the range 0[0; ]x  standardized 2(0, )XN s  (в (4) 0Xm = ). Adjust for interval 0[0; ]x  

norm valuation:  

( ) ( )( )

( )
( )

( ) ( )

0 0

0 0

2
2

2 2
0 0

2

2

2
00

1

0 0

( ) exp exp
2 2

1 exp
2 exp ( )

22 0 ( )
4

1 2 ,
2

x x

X

X X

px px
X

X

C CC f x dx px dx px dx

u d t dt
C C Ct dt erf t

du erf t

C erf px C erf px

ps ps

n
s

ppps n

¥

-¥

-

= - = - =

= = -
= - = = =

= =

é ù= = Þ = ë û

ò ò ò

ò                     (45) 

де 2
2 X

X

xt dx dts
s

= Þ = , and the boundaries of integration are defined as  

0
0 0

0, 0,

, .

x t
t px

x x t px

= =ìï= Þ í
= =ïî

 

In (45) when converted  
( ) ( )2 2exp expd t dt t dtn n= - Þ = -ò  taken into account the table integral [23]: 

 ( ) ( )2exp ,
4

cx dx erf cx erf is the Error function
c

p
- =ò .                             (46) 

Then, in order to provide for a given case the condition of valuation in the form 

 
0

0

( ) 1
x

Xff x dx =ò ,      (47) 

the standard distribution function (10) is renormalized: 

 ( )2

2
( ) exp

2
X

X

Cff x px
ps

= - .     (48) 

Thus, for the considered problem, the variance of the output random variable with the standard 
distribution (48) in the change interval 0[0; ]x  is equal to: 

( ) ( )( )
0 0 0 0

0 0

2 2 22 2

0 0 0 0

2 2 2 2 22 2 2

0 0

( ) 2 ( )  ( ) ( )

2 ( ) ( ) 2 2 .

x x x x

X X X X X

x x

X X

D x X ff x dx x X xX ff x dx x ff x dx X ff x dx

X xff x dx X X ff x dx X X X X X X

= - = + - = + -

- = + - = + - = -

ò ò ò ò

ò ò
   (49) 

 Calculating average X  : 

( )
( )

( )

( ) ( ) ( )

( )( ) ( )( )

0 0

0
0

2

2

22 2
0 0

2
0 02

00

2 2
0 02

exp
( ) exp

/ 22 2

/ 2
22

1 1 1exp 1 1 exp .
22

x x

X

XX X

x
x

X
X

X

XX

u x d px dxC CX x ff x dx x px dx
du dx erf px

CC xerf px erf px d px x x

px px

n

n s pps ps

s
s p

ps

p psps

= = -
= = - = =

= =

= - = - -

- - - = - -

ò ò

ò  (50) 
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Here the table integral has been taken into account [23]: 

 ( ) ( )( )2

0

1( ) exp 1
x

erf t dt xerf x x
p

= + - -ò .                                         (51) 

Let`s calculate the mean square 2X : 
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2 2
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x x
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X X
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C CX x ff x dx x px dx

du xdx erf px

C x erf px C xerf px dx x px

n

s pps ps n
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= = - = =
= =

= - = - - -

ò ò

ò

 

So, dispersion 

( )( ) ( )( )

( )( ) ( )
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2 2 2
0 0 0

2
02 2

0 0 2 2

11 exp 1 exp
2

1 exp
1 exp 1 .

2

X
X

X

D x px px

px
x px

ps

p s

é ù
= - - - - - - =ê ú

ê úë û
é ù- -
ê ú= - - - +
ê úë û

   (52) 

 
Conclusions 

In conclusion, let's note this. The study of the influence of the restriction of the interval of values of 
the BB on the laws of its probabilities was started long ago [25], and the corresponding results in the future 
were used to model the reliability of physical and technical accuracy and accuracy of production  
[13, 17, 26]. 
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Завжди актуальні задачі отримання і опрацювання експериментальних результатів в 
складних системах. Випадкові завади, похибки вимірювань, недосконалість та обмеженість 
математичних моделей та алгоритмів обробки даних здатні змінювати вигляд розподілу і 
призводити до некоректності використання алгоритмів, наприклад, як це має місце з 
фільтрації по Калману в системах керування. Складні методи ідентифікації законів розпо-
ділу потребують дослідження квантових систем, природніх явищ, екологічних, біологічних, 
тощо процесів, для яких характерна наявність сингулярностей і багатомодовості розподілів. 
Тому часто для моделювання ймовірнісних розподілів експериментальних даних реко-
мендують застосовувати не окремі закони розподілів, а узагальнений розподіл як єдину 
статистичну систему, яка відомі розподіли включає в себе як окремі часткові випадки. Так 
узагальнений гамма-розподіл включає в себе розподіли Релея, Максвелла, Вейбулла, Леві, хі-
квадрат, які широко використовують в прикладних задачах, зв’язаних із статистичними 
методами досліджень фізичних процесів, дистанційним зондуванням, в теорії надійності, для 
опису дисперсійного складу частинок дроблення та розрахунку ефективності розділення фаз 
у газорідинних потоках. 
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