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Always actual tasks of obtaining and processing experimental results in complex systems.
Random obstacles (errors), measurement errors, imperfections and limitations of mathematical
models and data processing algorithms can change the appearance of the distribution and lead to
incorrect use of algorithms, for example, as is the case with Kalman filtering in control systems.
Complex methods for the identification of distribution laws require the study of quantum
systems, natural phenomena, environmental, biological, etc. processes, which are characterized
by the presence of singularities and multimodality of distributions. Therefore, it is often not
recommended to apply separate distribution laws to simulate probabilistic experimental data
distributions, but a generalized distribution as a single statistical system, which known
distributions include as individual partial cases. Thus, the generalized gamma distribution
includes Rayleigh, Maxwell, Weibull, Levy, Hi-Square distributions, which are widely used in
applied problems associated with statistical methods of physical processes research, remote
sensing, in the theory of reliability, for describing the dispersion composition of particles
fragmentation and calculation of the efficiency of phase separation in gas-liquid streams.

Introduction

Always actual tasks of obtaining and processing experimental results in complex systems.
Random obstacles (errors), measurement errors, imperfections and limitations of mathematical
models and data processing algorithms can change the appearance of the distribution and lead to
incorrect use of algorithms, for example, as is the case with Kalman filtering in control systems.
Complex methods for the identification of distribution laws require the study of quantum systems,
natural phenomena, environmental, biological, etc. processes, which are characterized by the
presence of singularities and multimodality of distributions. Therefore, it is often not recommended
to apply separate distribution laws to simulate probabilistic experimental data distributions, but a
generalized distribution as a single statistical system, which known distributions include as
individual partial cases. Thus, the generalized gamma distribution includes Rayleigh, Maxwell,
Weibull, Levy, Hi-Square distributions, which are widely used in applied problems associated with
statistical methods of physical processes research, remote sensing, in the theory of reliability, for
describing the dispersion composition of particles fragmentation and calculation of the efficiency of
phase separation in gas-liquid streams [1-3].

Using Erlang's distribution, imitation models of processes are created, the duration of which can be
represented as the sum of elementary sequential components distributed in exponential law. By distributing
the Relay, they simulate a change in the amplitude of the radio signals and estimate the random deviation
from the point on the plane that is not co-ordinating with each other. The distribution of Rice is related to
the statistics of radio frequency propagation in a multichannel conductor, which is used to process magnet
resonance imaging data.
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Widespread use has been made of generalized distributions. A generalized index distribution is a
scalable mixture of normal distributions, and is therefore considered as the boundary for random amounts
of statistics constructed from random volumes [4-5]. The generalization of the normal distribution in the
form of a superposition of the normal distribution of Gauss and of the exponential distribution of Laplace
allows us to map not only the diversity of statistical distributions, but also without checking the numerous
hypotheses according to the criteria for approval to make the selection of the BB sample to a certain
distribution law. The application of generalized divisions in aeronautics allows us to obtain a reliable
estimate of errors in determining the location of a point on a plane and to make a probabilistic prediction of
liquid events due to the presence of distribution tails.

In statistical simulation, they work either with random sample sizes (ABB) (abbreviation RV), or
with experimental data, or with Monte Carlo simulation results. Therefore, for constructing models on the
basis of the statistical analysis of the BB, the minimum of the basic provisions of the probability theory
includes the estimation of the probability of the event, the function of distribution of density f, (x)
probabilities, its parameters, and the connection between the BB. Function f, (x) — is integral and has a
definition area D(f) — the whole number axis, except perhaps a counted set (coutable set) of points where
density f, (x) may not exist; change area E(f)=[0;+¥) P O£ f, (X)a+¥. In many practical
problems, the distribution density itself is not of interest, but the integral of the product of this density on a

certain function. These operations in the theory of probabilities have special notations and names and allow
us to calculate the important characteristics of the BB as the position of the center of scattering as the mean

value of the distribution (average, center of gravity) E, (m, or average Y) and the parameter of the shape

of the curve itself: s =D, (s, >0).

If the probability theory uses the method of moments to estimate the distribution parameters, then
for such distributions as normal, exponential, trapezoidal, etc., the notion of quantitative characteristics of
the BB as the mean, variance, mean square deviation deviation (abbreviation SD) and others. But the
method of moments is valid only for those distributions for which there are moments, that is, the
corresponding integrals do not run out.

A more universal concept is the distribution center, which is defined as the center of gravity
distribution or 50 % quantile. The center of gravity of the distribution of BB is a mechanical analogue of
mathematical hope, assuming that the probabilities of values are the masses of points. In physics, based on
the model of the center of gravity, it is substantiated that an arbitrary body in an uncertain state tries to take
an equilibrium state. Similarly, an arbitrary BB, subject to a significant amount of measurements, goes to
its equilibrium (in the sense of the mean) — the mathematical expectation. Such an approach only requires
the existence of the zero order and the distribution width. For a symmetric distribution, as a standard
(normal), the center of gravity coincides with the fashion. However, unlike fashion, the concept of the
center of gravity distribution is legitimate for all distributions. So, for the Cauchy distribution there is no
mathematical expectation, then the concept of the center of gravity of the distribution curve for it is lawful.
There is no fashion for even distribution. Mathematical expectation E, (or M[X]) (mean) m, — This is a

description of the situation, and the dispersion (variance of distribution) D, € is a characteristic of
scattering*). An integral value of the square root s, =+,/D, , describes (the standart deviation
(abbreviation SD)).

* In probability theory, the variance is a measure of scattering from the mean, whereas in mathematical
statistics, it characterizes the degree of scattering of the quantitative values of the statistical sample relative
to the average — the matrix of the expectation of the square of the deviation of the random variable from its
mathematical expectation.
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The dispersion characterizes scattering in relation to its mathematical expectation. It connects
the first and second initial moments and characterizes the intensity of the fluctuations, so the case
D, =0 has no physical content. If the second initial moment characterizes the distribution of BB in
relation to the origin of the coordinates, then the variance is relative to the mean value. From the
standpoint of physical interpretation, the variance for a deterministic quantity is absent, although in
reality the second initial moment is not zero at the same time. Indeed, the deterministic value is
located at a certain distance relative to the origin of the coordinate, which is not equal to zero, so the
second starting point is different from zero.

The dispersion has the dimension of its square. This is not very convenient for simulating

physical processes, therefore, another scattering parameter s, is introduced. For example, in the
electric circuits (circuits), the dispersion is preferably related to the average power emitted by the
active electric resistance of the variable component of the applied electric voltage or electric current
flowing through this resistance. Then the square root of the dispersion in this case will correspond
to the displays of a voltmeter or an ammeter, if by the condenser, the component of the electrical
signal has been eliminated.
Parameter s, in science and technology is the unit of expected or measured scattering of
explosives. Probability of scatter within the range s, :
R(-s, £EX£+s,)=0.63. 1)
In military calculations, scattering x is often modeled in units X, - this is such a value for which
the probability of the value of BB x from the middle X, equals
R(-X, ExE£+X,)=0.5. (2
In this case, all possible range of scattering values is divided into two equal parts corresponding to
the probabilities of “hit” and “failure”. Values X, and s, are linked by a relationship: X, =0.675s, .
Accordingly, confidence intervals of deviations x, for which probability R(x)i0.99, equals 3s, , or 4X,
R(-3s, £Xx£+3s,)=0.997 or R(-4X, £ x £ +4X,)=0.993. (3)
Nonlinear distributions are still accepted to characterize the coefficients of sloping (coefficient of
skewness)
_ 3th moment about the mean _ m,

S = 4
X (variance)* m3’? @
and steepness (coefficient of kurtosis or coefficient of excess.):
E - 4th moment about the mean _ m, (5)
X (variance)? m2
Relation
s
V=t (6)

X
characterizes the variation of the values of the BB, which is called the coefficient of variation and is
considered only if m, >0. The greater its value, the greater the variance. The coefficient of variation

depends on the “start time” and is convenient especially for the exponential distribution. For an
exponential distribution, the coefficient (6) does not depend on its parameter and is always equal to one.
The coefficient of VV variation is a relative measure of fluctuations, which characterizes the spread in
relative units, while the mean square deviation is in absolute terms and is used to estimate the SKV of the
mathematical expectation.
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An important stage of statistical simulation is related to the direct and inverse transformation of
random physical data, as a quadratic type. So, on the transformation of the type

g(X)=Y =aX?. (7)

The principle of the operation of optoelectronic transducers [11], speckle-interferometers [12], is

based on the Monte Carlo method [13], is used in the theory of diffraction [14], and others. By physical

nature, this type of signal converters are quadratic detectors, in which an output is obtained from the signal

aX? atthe input X . The nonlinear transformation of a quadratic type plays an important role in quantum

physics [24], where, due to the limitation of the technical capabilities of the experiment to the principle of

uncertainty
ge="H 2 G0
2m  &2m gg ag

random restrictions of the spatial motion of a quantum particle are accompanied by a fluctuation of the

(8)

pulse by the amplitude E
a

Reversed transformation(7)
g (V) =Y =bVX, ©)

allows you to find speed with the known kinetic effect — the presence of energy in the moving body
J =\EJW, the strength of the current in the manifestation of the thermal effect — the motion of
m

1
JR
direct and inverse transformations of random variables (BB), trigonometric, such as, for example, a
functional connection between the parameters of the oscillatory oscillator. Depending on the setting
of the task, they are directsinX,cosX and reversed arcsin X =sin™* X,arccos X =cos™ X

trigonometric transformations.
A direct square transform of type (7) was studied in detail see, for example, [10-17], but only in
terms of constructing the probability density distribution function f, (y), whereas the laws of the inverse

to him were studied less intensively. The author [18] tried to solve such a problem, proposing for this a
scheme of so-called transformation of indices in solutions of the dispersion equation. As shown in [19], the
author's approach [18] turned out to be false. Therefore, for practical purposes, such studies are also
relevant in the future. This work is devoted to the algorithm of the correct application of direct and inverse
transformation of explosives in a probabilistic-statistical experiment.

the carriers in a medium with resistance | = JR, and others. It is possible to infer other types of

Algorithm for working out and discussion of results
First of all, let us draw attention to some of the problems that may be accompanied by statistical
averaging of physical quantities. The function is valid, must satisfy all axioms of probability. Often,
mathematical hope E, BB x call it the mean value X and it is calculated as an integral:

+¥

X =E, = Xf, (x)dx. (10)
0

If the integral (10) is divergent, then there is no mathematical hope. In it, the boundaries of
integration cover a semi-limited interval (0;+¥) , since the physical values of the negative absolute values

are not taken into account.
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Schematically, this is depicted in Fig. 1 (a) for the case BB X with probability Gauss density
f (X).
1 &2 (x-my)*0 1
_ope- UM 0oL egp(-pix-m, ). (1)
psi & 2k g \2psi

e (x) =

which is characterized by average E, =m, and dispersion D, =s% (N(m,;sZ)- Distribution with
mean square deviation (MSD) s, ).
Let’s apply to BB X with distribution (11) linear transformation
g(Y)=Y =aX +b, (12)
So we get BB Y with probability density distribution function f, (y).
We substantiate the analytic form of the function f, (y).
By definition [11], the function f, (y) The transformed BB is calculated by the formula

d }
fy (y) =‘d—yg ()] fx (97 (), (13)
where
gtg=x=Y"2 (16)
a
the function reversed to (11) transformation, the module of the derivative from which is equal to:
d _ 1
a8 == (15)
y a
Substituting (14) into formula (10), we get that function f, (y) looks like:
1 & ay-b § 0 1 1 & p 20
f () =———=—expg-pc——-my: = —expe-—(y-[o+am,]) . (16)
! 2ps?i a § ¢ a “05 \J2ps? a gaz( X)ﬂ

Consequently, the linear transformation (11) does not change the form of the distribution of the
probability density f, (x) and distribution (16) BB Y is subject to Gaussian, but with an altered
coordinate of the extremum

y=[b+am,].

Having selected the displaced position of the extremum as the starting point in the centered system,
the integral (10) will look like:

+¥

Y =E, = ¥i, (y)dy 7

with an infinite two-sided interval of values of the integration variable (-¥;+¥).

We draw attention to the possible problem of incorrect application of mathematical transformation
in the statistical averaging of random variables. Yes, let the sample be obtained by transforming the
explosives into a fractional law

h(x) =/X . (18)
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2 2 .
If you make a formal replacement (\& ) = X,S0 square average (\/; ) can be calculated as integral

(VX) =x= 5‘ Xf, (X)X . (19)

Since the integral function is odd, and the limits of integration are symmetric, then the integral (15)
is zero. The resulting result is incorrect, so this task will also be given attention.

Consider another example. Let the statistical analysis undergo fluctuations of the harmonic
oscillator. If at the initial moment the oscillator was in a state of stable equilibrium and had a speed other
than zero, then in the absence of disparative processes in the system, the amplitude of the deviation x is
described by the function x = x,sinj .

Let us assume that the fluctuations are amplitudes and the random variable X is subject to a uniform
distribution with probability density

1
f (X)=— . (20)
XO
Calculating the dispersion of the phase
D, =F*-(F)". 1)
To calculate statistical averages F and square F
¥ _ ¥
F=0J3 fe@)di; F=(i°fG)di, (22)
-¥ -¥

it is necessary to justify the integration limits in (22) and the analytic form of the probability density
distribution function f_(jJ).
We perform transformation of BB F

F=g(X)=arcsin£=sin‘li, (23)
XO XO
back to which looks
X =g (X)=x,sinF, (24)
The derivative function module x = x,sinj equals
@ lint 2= X, |cosj |, (25)
dj X,
So the function f_(J) will looks like
fe(@)=lcosj |. (26)

Limited range of extreme values -x, £ x £ X, The amplitude of the deviation of the oscillator from

the equilibrium position, according to (20), imposes a restriction on the phase change interval:
P s p
-—£JE+—. 27
S EVE+D (27)
Therefore integrating parts (22)
_ P u=j dn=|cosj|dj
F=2 jlcosjij =2 "~ 0] J‘
ol du=dj n =lsinj |
- p/2 — - — P -
FP=2§§%sinjldi=2| " 3 dn Ssing |d
o2 du=2jdj n =[sinj |
We assume that the phase dispersion equals

D.=F?-F=0-0=0. (29)

p/2
=2j |sin] ||p;2/2 =2 () Ising |dj =-2j |cos] ||p/2 0,

pl2

P2 (28)

p/2

ooz PR
=2j?%|sinj ||'jp/2—4oj|smj |dj =0.
-p/2

2
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The result is incorrect. The equality of zero (29) contradicts the very physical nature of the
dispersion, as the intensity of fluctuations. In addition, the Monte Carlo statistical modeling process
is accompanied by an estimation of SQU. Therefore, the variance can not accept negative values,
and therefore can be used as an objective characteristic of the degree of intensity of fluctuations.

The equation of quadratic transformation (7) in the range of values y <0,

it does not have the actual solutions and the density of probabilities f, (y)=0. In region y 20,
probability density f, (y) * 0 and equation (1) has two roots:

X, ==Y /la, x40,
X, =+JY /a, xf0.

In the domain of the monotonicity of function (1), a cumulative probability correlates with the
relation:

(30)

R () =R £Y) =R(-Y EX £4y) =F (JY) - F (). (31)
From where function f, (y) is obtained by differentiating the expression (31):
1 1 ,& ([yo 1 1 _& |[yo0
VOSSN N ) .
v (Y) 2\/5\/ng an 2\/5)/)(% aa (32)

Here it is taken into account that in the range of values of the argument (-¥,0),
the inverse function and the first derivative have the appearance:

a4y 11
97 (y) = Ja—ﬁldyg (y) Nk (33)
But in region (0, +¥)
a1 .i_l _ 1 1
g (y)—+—£ﬁ g +_2J5_ﬁ' (34)

Therefore, for strictly monotonic functions, the probability density is calculated by the formula (13).
The dispersion of the transformed BB by law (29) is defined as:

D, = §(y-Y) £,y =5 ((y) #7" - 237 £, (ypay =
‘¥ - (35)

¥ ¥ ¥ ¥
\ _2 \ v \ 2 _2 \ _2
=0y R (dy+Y g f(y)dy -2Y § yf, (y)dy =Y*+Y ¢ f, (y)dy -2Y".
-¥ -¥ -¥ -¥
To substantiate the final analytical form (35), we need to specify the explicit type of the distribution
of the IV, which is subjected to transformation.
A case of a uniform distribution of the original random variable X .
Let VV be distributed by law (16). Check the condition of normalization:
N 17 1% 1
) fy ()dx=—§dx=—gdx=—x =1. (36)
S S A
Integration boundaries are adjusted to the interval [0;x,] changes in the absolute value of the amplitude,
so the dispersion of the output BB will be equal:

X

Dy = X2+ X § f, ()dx-2X =X?+X -2X =X?-X". (37)
0

The equation (37) is valid for statistically independent BB* [11].

* For independent BB W cavariation equals 0 [11]. The correlation coefficient of two BBs can be zero, even
if the BBs are not independent. On the contrary, if the correlation coefficient is different from zero, then two BB's
can not be independent [20-22].
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Calculating average X i X?:

Y=X‘5xfx(x)dx=ix2*°=ﬁ, 7=Sx2 £ (x)dx= Lo =X (38)
0 2x, ° 2 o 3 ° 3
So dispertion (37) equals:
DX=7-Y2=§-X—3=X—5>0, (39)
3 4 12

which is consistent with [11].
Using formulas (32)—(34), we set the analytic form of the function f, (y) . If we take into account

that random changes are considered for absolute values x, then (30) has only one root X, =++/Y /a , so

=t Ly ﬁ; (40)
ol y FEVag axya

Note that the function (40) is nonlinear, therefore, in contrast to the linear transformation (12),
changes the type of distribution of BB [12].

Let's check for the distribution (40) of the normalization condition:

2

1Yy 2 \Naxo— L Jax, =1 (41)
e Sy 2eva V| Txa
Define the boundaries of integration:
ix=0, y=0,
y=ax2I:>x=1\/§I:>|L y , (42)
a TX=X,, Yy=aX,.

w=g(x) =%
T g'l(x)zi X T T T T
] LT =g inv (¥) X ]
g(X) ‘s:‘ _______ '_.: f\N(W) —
99 \ 10 /! o) [ ]
: .‘l.. : )I(_) ~“.§g
— L | i ST
- X +wW X, W,y
a b
Fig. 2
So average Y and 2 calculating as integrals:
— 1 a\xg y 1 ai(g axd 1 ,_1
Y = ——dy = dy = =———ax —\/gx,
s S o ST B T e
vz 1 ai(g y: o1 ai(g 3124, — e 1 _ 4
= —=dy = = ==ax,,
2xva Oy axa 07 Y ok a5
And dispersion (35) will be:
— o2 1 21 o1
D, =Y?-Y =Zax -¢=vax,: =—ax; >0. 44
\ 5% g3 VA% =osaK (44)
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In the literature, for example [10-12], the quadratic transformations of type (7) were analyzed, taking
into account both roots of the function (30).

Case of uneven distribution of output BB.

Let BB X is in the range [0;x,] standardized N(0,s%) (s (4) m, =0). Adjust for interval [0;x,]

norm valuation:
¥ Xo

Co fx(x)dx=
-¥

ﬁgexp(‘ sz)dx :%éem(-(\/ﬁx)z)dx =
X X

u=1 dn =exp(—t2)dt

Jpxo \Exo
CIS 0 exp(-t*)dt = ¢ 5 =Corf ®) = (45)
~ J2ps Vb lau=o0 n=\/;erf(t) 2 b
C . -1
=_ = =92€ u
5 erf (\/on) 1 b C 2.éerf (\/BXO)G ,
net= X b dx =+/2s «dt, and the boundaries of integration are defined as
J2s,
x 0, t=0,
t_\/7X =] |
TX=%, t= \/on.
In (45) when converted
dn = exp(—tz)dt Pn = (‘)exp(—tz)dt taken into account the table integral [23]:
(‘]exp(—cxz)dxz /%erf (\Ex) erf is the Error function . (46)
c
Then, in order to provide for a given case the condition of valuation in the form
0 ff ()dx =1, 47)
the standard distribution function (10) is renormalized:
ff, (x) = (48)

C
; exp(— pxz).
\2ps}
Thus, for the considered problem, the variance of the output random variable with the standard
distribution (48) in the change interval [0;x,] is equal to:

X —\2 X — - Xo , — )(\0
D, = O(X - X) ff, (x)dx =0((x)2 +X - 2xX) ff, (x)dx = §x* ff, (x)dx + X" ff, (x)dx -
’ ’ ° ° (49)

X X

2X Xt ()dx = X2+ X ff, (dx-2X = XZ+X -2X =X?-X .
0 0
Calculating average X :

Xo Xo — d - _ 2 d
Yz(‘)xffx(X)dxz Oxexp( pX )dx:L U= n exp( px) X _
0

C
J2ps? o J2ps? |du=dx n=,s2p/2erf (\/Bx)
- Cj{ X‘(;erf (Vex)d(\px) =% -, - (50)
0

c —\sp /2 xerf (\/Ex)

2ps
1

'@%p(‘”‘p( P ) - ) \/-ps (1‘eXp(‘pX§))'

0
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Here the table integral has been taken into account [23]:
\ 1 2
gerf (t)dt = xerf (x) + —=(exp(-x*) -1). (51)
0 = (e () -1)

Let’s calculate the mean square X°:
2

% c u=x dn=exp(—px2)dt
X2 = 5 ff, (x)d dx = =
gx O V2psy o OX reo(-pc)a V2pS5 |du =2xdx n =1/%erf (\/Ex)
X
= %xzerf (\/EX)E - Cg xerf (\/Ex)dx =x2 - (1— exp(- pxj)).

So, dispersion

D, =X - (1_ exp(— pxj)) - éﬁssx (1— eXp(_ Dxé))é = 52
¢ 1-exp(-px2)u
- Xg _ (1_ exp(— pxj)) gl+ ezx[jf)z(s )z(pxo )H
Conclusions

In conclusion, let's note this. The study of the influence of the restriction of the interval of values of
the BB on the laws of its probabilities was started long ago [25], and the corresponding results in the future
were used to model the reliability of physical and technical accuracy and accuracy of production
[13, 17, 26].
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3aBxkaM aKTyaJbHi 3a1a4i OTPUMAaHHA | ONPANIOBAHHA €KCHEPHMEHTAJIBHHUX Pe3yJbTATIiB B
CKJIAJHUX cucTeMaX. Bunmaakosi 3aBagu, noxu0ku BUMipIOBaHb, HeJOCKOHAJIICTh Ta 00MeKeHiCTh
MaTeMaTHYHHUX MojJejell Ta anropuTMmiB o0poOKM JaHMX 34aTHi 3MiHIOBAaTH BUIJSAA po3modiny i
NPU3BOJAUTH 10 HEKOPEKTHOCTI BHKOPHCTAHHSA AJTOPHTMIB, HANMpPHMKJIAA, SIK e Ma€ Micue 3
diabTpanii no Kanmany B cucremax xkepyBanns. Ckiaaani meroam inenrudikanii 3axonis posmo-
iy moTpedyOTh JOCHiIKeHHs] KBAHTOBUX CHCTeM, MPUPOJAHIX SIBUI, eKOJOTiYHUX, 0ioJ0oriuyHmX,
TOLLO NMPOLECiB, A/ IKMX XapaKTepHa HAsIBHICTh CUHIYJSPHOCTel i 0araToMo10BOCTI po3moaiiis.
Tomy 4YacTo AJf MOAEJIOBAHHSI HMOBIpHICHMX pO3MOJiTiB eKCIePMMEHTAJbLHHUX JAHUX PeKo-
MEHIYIOTh 3aCTOCOBYBATH He OKpeMi 3aKOHH PO3MOAiJiB, a y3arajbHeHHWiIl Po3moJiil SIK €IMHY
CTATHCTHYHY CHCTeMY, siKa BiioMi po3moainu BkJOYae B cefe Ak okpeMi yacTkoBi Bunaaku. Tak
y3arajbHeHHUil raMMa-po3no/ii BKJw4ae B cede po3noniau Pesess, Makcsesia, BeiiOyaa, Jlesi, xi-
KBa/paT, fIKi IIMPOKO BHKOPHCTOBYIOTH B NPHKJIAIHUX 3aJavax, 3B SI3aHUX i3 CTATHCTHYHMMH
MeTOAAMH AOCHiMKeHb (PiI3MUHUX MpoueciB, AUCTAHUIiHUM 30HAYBAHHAM, B Teopii HaxiliHocTi, 1A
ONHCY AUCHEPCIHOIO CKIAAy YACTHHOK APO0JeHHS Ta PO3PaxXyHKy e(eKTHBHOCTI po3aisienHs ¢a3
Yy ra3opiiMHHUX NOTOKAX.



