LUMINESCENCE PROPERTIES OF Ca_{3-x}Cd_xGa₂Ge₃O₁₂ GARNET SYSTEM DOPED BY Eu³⁺ IONS

L. Kostyk¹, A. Luchechko¹, O. Tsvetkova¹, B.Kuklinski², A. Vas'kiv¹

¹ Ivan Franko National University of Lviv, Lviv, Ukraine ² Institute of Experimental Physics, University of Gdansk, Gdansk, Poland E-mail: <u>kostyk@electronics.wups.lviv.ua</u>

The rare-earth activated complex oxides with garnet structure are well known in phosphor and solid state laser applications. In particular, Eu³⁺-doped phosphors are of strong interest for the application in UV and blue LEDs, since they exhibit a high quantum efficiency and photostability. In phosphor-converted LEDs a luminescent layer is applied on top of a semiconductor chip. As the luminescent layer can be used phosphor powder or a ceramic body.

The results of luminescence studies of ceramic garnet system $Ca_{3-x}Cd_xGa_2Ge_3O_{12}$ doped by Eu^{3+} (0.001-0.1 mol. %) are presented. The ceramic samples of pure and activated with Eu^{3+} ions $Ca_{3-x}Cd_xGa_2Ge_3O_{12}$ garnet were prepared by the method of solid state reaction at ~1100 ^{0}C using high purity starting materials. The XRD patterns showed all samples to be homogeneous.

Luminescence spectra are observed in the region between 570-720 nm and due to the typical ${}^{5}D_{0}-{}^{7}F_{J}$ (j=1–4) transitions of Eu³⁺, while emission lines originating from higher excited ${}^{5}D_{1}$ and ${}^{5}D_{2}$ levels are absent. The excitation spectra of samples for monitoring the ${}^{5}D_{0}-{}^{7}F_{4}$ emission of Eu³⁺ (705 nm) show the dominant sharp line at around 395 nm (${}^{7}F_{0}-{}^{5}L_{6}$) besides a weak lines at 469 nm (${}^{7}F_{0}-{}^{5}D_{2}$) and broad charge transfer band in UV range. The relative intensity of the 4f–4f transitions depends on the Ca/Cd ratio. Decay kinetics under excitation at 395 nm is characterized by one exponent with τ =3.15 ms at 300 and 77 K. The characteristics of Eu³⁺ luminescence allow suppose the formation of one type of Eu³⁺ centre in Ca_{3-x}Cd_xGa₂Ge₃O₁₂ ceramics in contrast to Ca₃Ga₂Ge₃O₁₂ single crystals, in which at least three type of activator centres are revealed [1, 2].

The $Ca_3Ga_2Ge_3O_{12}$ samples are nonluminescent. The pure $Ca_{3-x}Cd_xGa_2Ge_3O_{12}$ samples show a broad defect emission at UV or X-ray excitation. The possible mechanism of this luminescence is discussed.

The investigated luminescent materials show efficient red emission and can be suitable for the application in UV-emitting LEDs.

References

- [1] A.E.Nosenko, L.V.Kostyk, R.E. Leschuk, Journal of physical studies, 85 (2001) 5.
- [2] J.J.Romero, D.Jague, L.E.Bausa, E.Cavalli, Journal of Applied Physics, 1774 (2004) 95.