MYSTERY OF NON-EQUIVALENT CENTERS IN CONGRUENT AND STOICHIOMETRIC LiNbO3 AND LiTaO3

<u>G.Malovichko</u>¹, V.Grachev¹, J.Jorgensen¹, M.Meyer¹, M.Munro¹, I.Vrable¹, E.Kokanyan², V.Bratus³, S.Okulov³

 ¹ Montana State University, Bozeman, USA
² Institute of Physical Researches, Ashtarak, Armenia
³ Institute of Semiconductor Physics, Kiev, Ukraine E-mail: malovichko@physics.montana.edu

Lithium Niobate (LN) and Lithium Tanatalate (LT) doped with transition and rare-earth ions are of great interest for both fundamental science and advanced applications. According to the Rutherford back scattering data [1], all trivalent ions substitute for Li and should create similar centers. However, more than 11 different centers were distinguished by site-selective spectroscopy in congruent LN:Er [2]. Electron Paramagnetic Resonance, EPR and Electron Nuclear Double Resonance, ENDOR provides additional information about characteristics of impurity centers and their structures. Our EPR/ENDOR study has shown that transition and rare-earth ions create unexpected variety of completely different non-equivalent centers in both stoichiometric and lithium deficient congruent crystals. Four Nd³⁺, two Er³⁺, and nine Yb³⁺ centers were found and described in LN. Dominated Nd₁ center has C₃ point symmetry (axial center), whereas three others have lowest C_1 symmetry. Distant defects create small distortions of crystal field at the impurity site, which cause a line broadening, but do not change the C₃ symmetry. Defects in the near neighborhood can lower center symmetry from C_3 to C_1 . We concluded that Nd₁ has distant charge compensation, whereas the charge excess in low-symmetry Nd(Li) centers is compensated by near lithium or niobium vacancies. Both Er^{3+} centers have C₁ symmetry. Since no axial centers were found, models with cation vacancies do not describe our experimental data. The Yb³⁺ ions create three C_3 and six C_1 centers. The ENDOR observations of Nb nuclei for dominated axial Yb1 center gave us direct evidence that there are no defects in its surrounding. One axial and one C_1 centers are self compensated Yb(Li)-Yb(Nb) pairs. Six other centers are different complexes of Yb³⁺ and intrinsic defects. In high quality congruent LN and LT crystals, only the Fe^{3+} ions substituted for Li⁺ were observed (Fe1 centers with the C₃ symmetry, the distant charge compensation by intrinsic defects in cation sublattice). In stoichiometric samples of LN and LT the additional C₃ symmetry centers (Fe2-Fe4) were discovered. The ENDOR has shown that the Fe^{3+} ions in Fe2-Fe4 centers substitute for Nb⁵⁺ or Ta⁵⁺. The determination of the lattice sites and charge compensators of non-isovalent impurities are vital for both defect structure calculation and defect engineering for tailoring material properties for various applications. The work was supported by NSF.

References

[2] V.Dierolf, M.Koerdt. Phys. Rev., **B 61**, 8043-8052 (2000).

^[1] A.Kling et al. Rad. Effects and Defects in Solids, **155**, 229-233 (2001).