RADIOPURE ZnWO₄ CRYSTAL SCINTILLATORS FOR DOUBLE BETA DECAY EXPERIMENTS

P. Belli¹, R. Bernabei¹, F. Cappella², R. Cerulli³, F.A. Danevich⁴, A.M. Dubovik⁵,
E.N. Galashov⁶, B.V. Grinyov⁵, A. Incicchitti², V.V. Kobychev⁴, V.M. Kudovbenko⁴,
L.L. Nagornaya⁵, S.S. Nagorny⁴, S. Nisi³, F. Nozzoli¹, <u>D.V. Poda⁴</u>, D. Prosperi²,
V.N. Shlegel⁶, V.I. Tretyak⁴, Ya.V. Vasiliev⁶, Yu.Ya. Vostretsov⁵, S.S. Yurchenko⁴

¹Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Sezione di Roma Tor Vergata, I-00133 Rome, Italy

²Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN, Sezione di Roma, I-00185 Rome, Italy

 ³INFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi (AQ), Italy
 ⁴Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
 ⁵Institute for Scintillation Materials, 61001 Kharkiv, Ukraine
 ⁶Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia poda@kinr.kiev.ua

Zinc tungstate (ZnWO₄) was proposed as perspective material for the lowcounting experiments to search for double beta (2 β) decay of zinc and tungsten isotopes twenty years ago [1]. The first low-background measurement with the small ZnWO₄ sample (mass of 4.5 g) was performed in the Solotvina Underground Laboratory (Ukraine) at a depth of \approx 1000 m w.e. [2].

A high sensitivity experiment to search for 2 β processes in Zn and W isotopes has been performed in the underground Gran Sasso National Laboratories of the I.N.F.N. (Italy) at a depth of ≈ 3600 m w.e. Three large volume (117 g, 239 g, and 699 g) radiopure ZnWO₄ crystal scintillators (one produced in the Nikolaev Institute of Inorganic Chemistry, and two in the Institute for Scintillation Materials) were used in the low-background measurements. The total time of data taking exceeds seventeen thousands hours. Low level radioactive contaminations of ZnWO₄ samples were estimated with the help of time-amplitude analysis, pulse-shape discrimination and by fitting of background specta. The activities of ²²⁶Ra and ²²⁸Th do not exceed a few µBq/kg, while the total α activity of nuclides from U/Th families is at the level 0.2–0.8 mBq/kg. New improved half-life limits on different channels of 2 β processes in ⁶⁴Zn, ⁷⁰Zn, ¹⁸⁰W and ¹⁸⁶W have been established at the levels $T_{1/2} \approx 10^{18}$ – 10^{21} yr. Preliminary results of this work have been published in [3, 4].

References

- [1] F.A. Danevich et al., Prib. Tekh. Eksp. 5 (1989) 80 [Instrum. Exp. Tech. 32 (1989) 1059].
- [2] F.A. Danevich et al., Nucl. Instr. Meth. A 544 (2005) 553.
- [3] P. Belli et al., Phys. Lett. B 658 (2008) 193.
- [4] P. Belli et al., Preprints ROM2F/2008/22; arXiv:0811.2348v1 [nucl-ex], submitted to Phys. Rev. C.