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Abstract — A modification of the structure for a neuro-
fuzzy unit was offered which is generally a hybrid system that 
combines nonlinear synapses and an activation function to 
form the hybrid system’s output value. The introduced neuro-
fuzzy element is specifically an extension of the common neo-
fuzzy neuron which is upgraded at the expense of application 
of an additional (contracting) activation function. A particular 
robust learning procedure is also considered for this case that 
makes it possible to reduce errors while processing data 
containing abnormal observations. 
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I. INTRODUCTION

Multiple real-world systems and applications generate 
huge sequences of observations (data flows/streams) that 
arrive sequentially at a high speed. Data analysis should be 
brought into play in real time using limited storage and 
computing capabilities. As far as is known, Data Stream 
Mining [1-5] deals with extracting knowledge structures 
from continuous rapid data. Hybrid Computational 
Intelligence systems [6-10] like neuro-fuzzy systems, 
common neural networks, and wavelet neuro-fuzzy systems 
have proliferated extensively for taking decisions on a vast 
class of challenges [8-10] that come into existence within 
Data Mining in relation to their universal fitting properties 
and their aptitude of linguistic interpretation for obtained 
results. Most of these systems have proven their efficacy in 
problems of intensively developing Data Stream Mining [3-
5], where information to be processed is fed sequentially (an 
observation by an observation), and a tuning process of the 
system’s parameters should be carried out in an online mode 
by means of adaptive learning algorithms. First of all, we 
should mention here such systems where an output signal 
depends linearly on parameters to be tuned as radial-basis 
function neural networks [11-20], neuro-fuzzy systems by 
Takagi-Sugeno-Kang [21-22], hybrid systems that use neo-
fuzzy neurons [23-30] as their nodes. 

Experts’ attention in the area of Computational 
Intelligence has been attracted to deep neural networks [31-
39] recently. These networks considerably transcend
conventional shallow neural networks regarding the quality
of information processing. At the same time, they are
instantiated by a low rate of learning that can be explained by

a necessity of using the error backpropagation method for 
multiple hidden layers of the network. In view of this, it 
seems reasonable enough to synthesize/update a structure (a 
computational unit) and its learning methods to be later used 
as a part of some more complex computational systems like 
evolving cascade systems and deep neural networks. A point 
to be noted here about the novelty is the fact that a new type 
of membership functions is used in synapses to raise 
approximating abilities of a hybrid neuro-fuzzy element as 
well as different types of activation functions are considered 
for the introduced topology based on the fundamental 
properties of an issue being solved. The paper is composed in 
such a manner. Section 2 comprises complementary 
information concerning a neuro-fuzzy unit and its 
modification. Section 3 describes a robust learning procedure 
applied to the system and different activation functions to be 
used for practical applications. Section 4 embodies 
experimental results of the presented neuro-fuzzy system. 
Conclusions are presented in the last section. 

II. A MODIFICATION OF THE NEURO-FUZZY UNIT’S 
STRUCTURE 

Ye. Bodyanskiy and S. Popov proposed in broad 
brushstrokes further changes [40, 41] to a topology of the 
neo-fuzzy neuron (NFN) [23-25]. The proposed system is 
intrinsically a hybrid combination of a neuro-fuzzy system 
(more specifically the neo-fuzzy neuron) and the elementary 
neuron by McCulloch and Pitts (also known as the MCP 
neuron). The exploited architecture eliminates shortcomings 
(which are typical for the neo-fuzzy neuron) at the cost of 
induction into the system’s structure of a tightening 
activation function that brings some additional nonlinear 
effect. 

That means a nonlinear calculative framework (Fig.1) 
which embodies nonlinear synapses (Fig.2) succeeded by a 
summation block and a nonlinear activation function to 
calculate the system’s output. 

Said another way, input signals are transformed with the 
help of synapses into the signals ( )i if x . These signals are 

later joined into the internal activation signal ( )
1

n

i i
i

u f x
=

= .

The neuron’s output signal is made up with a nonlinear 
activation function ( )y uψ= . 
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As a general matter, a NFU output signal executes a 
mathematical transformation (based on the quadratic 
criterion) in a certain way 

( ) ( ) ( )
1 1 1

ihn n

i i ij ij i
i i j

y u f x w xψ ψ ψ μ
= = =

  = = =   
   
   

where ( )ψ   notes a nonlinear activation function (either a
sigmoid function or a hyperbolic tangent); ix  describes input 
signals; ( )ij ixμ  marks membership levels; ijw  determines 
synaptic weights; h  describes a quantity of fuzzy spans; n
stands for a plurality of inputs; y  is an output value. 

Fig. 1. A structure of the neuro-fuzzy unit 

Fig. 2. A scheme of a nonlinear synapse in the neo-fuzzy neuron 

On a large scale, triangular membership functions (Fig.3) 
stand on a distance between the input ix  and centers ijc

Fig. 3. Triangular membership functions 

( ) ( )1 1 2/i i i i ix c x cμ = − ,

( )
( ) ( )
( ) ( )

, 1 , 1 , 1

, 1 , 1 , 1

/ , ; ,

/ , ; ,

0 .

i i j ij i j i i j ij

ij i i j i i j ij i ij i j

x c c c x c c

x c x c c x c c

otherwise

μ
− − −

+ + +

  − − ∈    = − − ∈  



 (1) 

( ) ( ) ( ), 1 , 1/ 1i h i i i h i hx x c cμ − −= − − , 

( )1 20, 1/ 1i ic c h= = − ( ) ( )1 / 1 , 1.i l i hc l h c= − − =  

It’s essentially taken all the initial data to be coded in the 
range [0;1]. It’s crucial that this type of constructing 
membership functions makes automatically provision of the 
Ruspini (unity) partition   

( )
1

1 .
h

i j i
j

x iμ
=

= ∀  

Let’s hypothesize that a fuzzy interval p   is currently 
active, an output of the nonlinear synapse may be presented 
in this fashion 

( ) ( ) ( ) ( ), 1 , 1
1

, 1
, 1

, 1 , 1

.

h

i i ij ij i ip ip i i p i p i
j

i p i i ip
ip i p

i p ip i p ip

f x w x w x w x

c x x c
w w

c c c c

μ μ μ+ +
=

+
+

+ +

= = + =

− −
= +

− −



Having said stated above, triangular membership 
constructions (1) are conventionally made use of as 
activation functions in the neo-fuzzy neuron. It may bring 
some obstruction for processes’ simulation exemplified by 
differentiable (smooth) functions. The piecewise linear 
fitting appeared in this case by the neo-fuzzy neuron can 
account for a diminished accuracy level of the results 
obtained. A quantity of membership functions could be 
increased to lessen this negative effect. But finally, it results 
in enlargement of a number of weight coefficients, and the 
structure’s complexity is growing along with the learning 
time required. The announced drawback may be avoided by 
means of cubic spline membership functions to be 
represented as follows 

( )

(

3

, 1 , 1

, 1 , 1

, 1

3

, 1 , 1
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, 1

2 2
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x c c x c c
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x c c
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   − − − −  + −     − −  
  ∈  = 

   − − − − − +     − −   
∈ 



At some time moment, an input signal engages only two 
adjoining functions (Fig.4) contemporaneously (this case is 
rather similar to the triangular membership functions). But 
the provided set of functions doesn’t cater to the needs of the 
Ruspini partition. Conversely, application of the cubic spline 
functional relations actualizes smooth polynomial fitting as a 
substitute for piecewise linear approximation and raises the 
possibility of carrying out the top grade simulation of 
substantively nonstationary and nonlinear signals. 
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Fig. 4. Cubic spline membership functions 

Giving effect to additional nonlinearity (compared to the 
conventional NFN) at the neuron’s output quantity 
culminates in automatic containment of the element’s output 
amplitude (which is especially relevant for construction of 
complex multilayer networks). A procedure of the NFE 
weights’ tuning is exploited with reference to the quadratic 
criterion 

( ) ( ) ( )( ) ( )

( ) ( )( )( )

( ) ( )( )

2 2

2

2

1 1

1 1
2 2

1
2

1
2

ihn

ij ij i
i j

E k d k y k e k

d k u k

d k w x k

ψ

ψ μ
= =

= − = =

= − =

  
= −     



(2)

where k  denominates a unit of discrete time; ( )d k  marks a

reference signal; ( )e k  stands for a learning error;

( )1 2, ,..., ;
T

i i i ihw w w w=

( )( ) ( )( ) ( )( )( )1 ,..., .
T

i i i i i h ix k x k x kμ μ μ=  

In the interest of minimization of the equation (2), the 
gradient descent learning procedure should be applied 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )( ) ( )( )

1 w

w

w k w k k E k

e k
w k k e k u k

u k

w k k e k u k x k

η

η

η ψ μ

+ = − ∇ =

∂
= + ∇ =

∂

′= +

(3) 

where ( )kη  designates a learning rate. 

III. A ROBUST LEARNING PROCEDURE AND ACTIVATION 
FUNCTIONS USED 

Utilizing the neuro-fuzzy element is quite challenging for 
signal processing. The remarkable thing is that its nonlinear 
properties can be set up by means of membership functions’ 
parameters inside the nonlinear synapses. From this 
perspective, outliers may be put out, and an impact of less 
limitative input terms should get diminished noticeably. 
Learning methods on the grounds of the quadratic criteria (2) 
are highly exposed to data distribution’s deviations. In the 
context of various types of irregular observations, learning 
methods based on the quadratic criteria don’t demonstrate 
high efficiency due to obstacles with the “heavy tail” 
distribution and massive errors. In these cases, robust 
estimation methods [42] seem to be the most effective and 

appropriate ones [43-44]. The criterion mentioned below is 
very popular in the theory of robust estimation 

( ) ( )
ln coshR e k

E k β
β

 
=  

 
(4)

where ( )e k  stands for a learning error; β  denotes a scalar
parameter magnitude to be chosen commonly in terms of a 
posteriori knowledge in order to appoint susceptibility for 
anomalous faults. 

According to the initial paper [41], the improved learning 
procedure for the hybrid neuro-fuzzy element provides an 
opportunity to reduce processing errors for irregular samples 
by introducing the robust learning criterion. Through the lens 
of the learning procedure (3) grounded in this criterion (4) 
for the neuro-fuzzy element, the tweakage process of the 
system’s weights may be represented in this view  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1

tanh

R
w

R

w k w k k E k

e k
w k k u k k

w k k k k

η

η β ψ μ
β

η δ μ

+ = − ∇ =

′= + =

= −

(5)

where 

( ) ( )
tanh

RE k e k
e

β
β

∂
=

∂
;  ( ) ( ) ( )( )tanhR e k

k u kδ β ψ
β

′= . 

Besides that, the sigmoid is smooth and dependent on x . 
The fault is suitable for backpropagation, and weights should 
be updated subsequently. But anyway, there several issues to 
be addressed with that. The curve is quite plane beyond the 
[ ]3;3−  interval which means that once the relationship finds
the way in that bracket, its gradients start descending (the 
gradient is verging to zero, and the network doesn’t receive 
any training in the actual circumstances). An alternative issue 
that has to do with the logistic function (a sigmoid curve) is 
that its meanings only gauge in ( )0;1 . This means that the
sigmoid curve is not symmetric around the reference point, 
and the implications gained are positive. But what if there’s 
no need to send permanently to a subsequent neuron the 
values to be all of the same sign. One of the possible 
solutions for this case is scaling the sigmoid curve. The tanh 
function is of the nature of the logistic function and is in 
sober fact just a scaled version of it. Tanh works in the same 
fashion compared to the sigmoid relation, but it is symmetric 
over the initial point and sites from -1 to 1. It principally 
addresses the challenge of the meanings all being of the same 
sign. The rest of features are identical to the logistic curve. It 
is continuous and differentiable at all points. The functional 
relation is nonlinear and may be applied easily to 
backpropagating errors. Speaking of the tanh gradient, it’s 
steeper in comparison with the sigmoid function. A selection 
between sigmoid and tanh essentially is stipulated by the 
gradient precondition for a problem statement. But there’s 
also the vanishing gradient problem (the tanh graph is plane, 
and the gradients obtained are close to zero). The softmax 
function (the normalized exponential function) is some sort 
of the logistic function, but it’s favorable when it comes to 
handling classification issues. The softmax distribution 
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would compress output implications for every group between 
0 and 1 and divide by the outputs’ sum. In order to get a 
probability distribution of outputs, the softmax function is 
usually put in requisition to impart probabilities when there 
is more than one output. It’s chiefly advantageous when 
there is a need to find the most probable occurrence of an 
output with respect to other ones. Several more words should 
be said about a sigmoid-weighted linear unit (SiLU) 

( ) ( )
1 x

xf x x x
e

σ−= =
+

where ( )xσ  signifies the sigmoid function. Its derivative is

( ) ( ) ( ) ( )( )1f x f x x f xσ′ = + −  

and it’s generally used as a function approximator for neural 
networks in reinforcement learning.   

The last functional relation to be mentioned is SoftPlus 

( ) ( )ln 1 xf x e= + .

And its derivative is the logistic (sigmoid) function. 
That’s naturally a smooth approximation of a rectified linear 
unit which is broadly exploited in deep learning, computer 
vision, and speech recognition. All of these fore mentioned 
functions could be utilized as activation functions in the 
hybrid neuro-fuzzy element specifically from the perspective 
of a task type under consideration and some initial conditions 
of the problem. 

IV. EXPERIMENTS 

Theoretical aspects of our research were validated with 
the help of an experimental study depicting the forecasting 
challenge of electric loads. An available data sample 
comprised 6380 values documenting 6 months of electric 
power consumption in 2012 in Kharkiv region (Ukraine). A 
number of experiments were conducted to compare 
performance and prediction results. In our experimental part, 
we used two learning criteria (the criterion (2) and the robust 
criterion (5)), a different number of membership functions as 
well as such activation functions as the hyperbolic tangent 
and the sigmoid-weighted linear unit (SiLU). The data set 
was split to training and test data arrays. In our experimental 
research, for the purpose of simplicity, a quite 
unsophisticated model embodying only a single NFU was 
ample. Plots of the data array in Figs.5-6 illustrate apparently 
footprints of outliers stipulated by peak loads, measuring 
faults, and other factors. The outliers’ fortuitous character is 
almost unpredictable and results in high prediction errors. It 
can be seen from Figs.5 and 6 that a prediction quality is 
growing (RMSE and SMAPE are gradually falling down). It 
should be noted that in case the outliers’ assessed values are 
used straightforward to manage the learning flow, all in all, 
that could lead to the model parameters’ distortion and 
consequently to a low rate of a prediction quality. 
Experimental results demonstrate a dependency between a 
forecasting accuracy and a number of membership functions 
(Figs.5-6). There’s also a dependence between a forecasting 
error and an amount of membership functions illustrated in 

Fig.7. 

Fig. 5. A forecast performed by the hybrid neuro-fuzzy element (2 
membership functions; the tanh activation function) 

Fig. 6. A forecast performed by the hybrid neuro-fuzzy element (5 
membership functions; the SiLU activation function) 

Fig. 7. A forecasting error for the hybrid neuro-fuzzy element depending 
on a number of membership functions  

V. CONCLUSION

The described modification for the hybrid neuro-fuzzy 
element has been developed as a structural node for more 
complex computational systems like evolving cascade neuro-
fuzzy systems and deep learning systems. Specifications of 
the membership functions can be set up in a rather 
straightforward manner to restrict large input values and 
contract extreme values. A few activation functions were 
considered for the offered modification in the neuro-fuzzy 
node in dependence to the nature of a task at hand. It was 
also recommended to give rise to approximation qualities of 
the system by applying the cubic splines as the membership 
functions. Having said that, it should be highlighted that the 
developed element is quite simple from the actualization 
point of view and keeps in possession approximating 
properties and a high processing speed. 
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