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Abstract—There is a wealth of analysis techniques that can 
be used in analyzing data of such a nature as EEG 
(Electroencephalogram), yet there are still many more ways 
and possibilities of analysis techniques to consider in order to 
produce a method that far exceeds the capabilities of the 
prevalent method. Since a multilayer neural network with 
multi-valued neurons (MLMVN) was successfully used earlier 
to decode EEG signals in a brain/computer interface (BCI) by 
analysis of their Fourier transform, it seemed very attractive to 
use it as a tool for EEG analysis. This work aims to further 
investigate how a complex-valued machine learning tool can be 
used to analyze EEG in the frequency domain. Our goal was to 
check how Fourier transform and complex wavelet transform 
of EEG can be analyzed using MLMVN in order to diagnose 
epilepsy, its remission or absence. We worked with a 
commonly used benchmark data set of epilepsy-related EEGs. 
The analysis of the transformed data was performed to 
determine a set of relevant statistical characteristics of 
DTCWT and Fourier transform components, which were then 
used as inputs of the MLMVN. The obtained results show a 
very high efficiency of the proposed approach.  

Keywords—Complex-Valued Neural Networks, Multi-Valued 
Neuron, Multilayer Neural Network with Multi-Valued Neurons, 
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I. INTRODUCTION

We would like to use here MLMVN to analyze EEG in 
the frequency domain. MLMVN is a representative of 
complex-valued neural networks (CVNN) family. There is 
plenty of work done that states the use of CVNN, for 
example, a good observation is given in [1]-[3]. Traditionally 
CVNNs have been very successful in solving a number of 
real-world problems. We should mention such applications 
as detection of landmines [4], prediction of winds and their 
profiles [5], analysis of bio-medical images [6], prediction of 
oil production [7], frequency domain analysis of signals in 
EEG-based BCIs [8].  

MLMVN is on the one hand a feedforward neural 
network, topologically identical to a multilayer perceptron 
(MLP). But on the other hand, MLVVN, being built from 
multi-valued neurons (MVNs) has its unique properties and 
important advantages over MLP. MLMVN was introduced 
in [9] as a 2-layer network. Then it was further developed 
[10] where MLMVN with an arbitrary number of hidden
layers was introduced. Every particular property of MLMVN
and its favorable distinctions over MLP are dictated by the
utilization of the multi-valued neuron (MVN) as its essential
unit. MVN was initially suggested in [11] as a k-valued
threshold element and then re-introduced as a discrete MVN
in [12].

MLMVN was effectively utilized in numerous 
applications. It was applied, for instance, for image 
deblurring through recognition of point-spread function and 
its specific parameters [13], long term time series prediction 
[7], analysis of signals in EEG-based BCIs [8], satellite 
information reversal for assurance of meteorological 
information profiles in the environment [15], solving various 
classification problems [3], [10], [16], and system 
identification [17]. MLMVN generalization capability in 
solving problems with discrete output, particularly 
classification and pattern recognition problems, was 
improved by a modified learning algorithm with soft margins 
[16]. To speed up a learning process and maintain 
simultaneously big learning sets and a high generalization 
capability, a batch learning algorithm was proposed in [17] 
and further developed in [18]. This algorithm as it is 
described in [18] was used in all experiments described in 
this paper. 

EEG is used to collect the data about brain electrical 
activity. Then analysis of these data can be used to discover a 
certain dysfunction of some groups of neurons in the brain. 
Particularly, EEG is used to diagnose epilepsy in its different 
stages and examine patients with this diagnosis in remission. 
In the context of computing, computer science and computer 
engineering, EEG is used in building brain/computer 
interfaces, which help people with disabilities caused by 
some brain dysfunctions to perform certain tasks. A seminal 
work on electrical activity in the brain was published in 1875 
by Caton [19]. His ideas were significantly developed 50 
years later by Berger [20], [21]. It was succeeded to him to 
detect electrical activity in the brain using special electrodes 
placed on the head. Corresponding signals were acquired and 
recorded using a galvanometer connected to these special 
electrodes. It was noticed that electrical activity of the brain 
may change, for example, when eyes are open or closed. 
With these developments, the presence of EEG signals was 
scientifically proven. EEG signals are used in diagnostics, 
controlling of the anesthesia stage during surgical 
procedures, studies of sleep disorders, sleep psychology, and 
investigation of migraine. These signals are measured using a 
BCI. It consists of special electrodes which are used for 
measuring the electrical activity of the brain from the head 
surface.  

Evaluation of EEGs is a specific job. It can typically be 
performed only by medical doctors whose area of 
specialization is EEG analysis. It is important to mention that 
EEG signals are not stable and they change continuously. 
They change their phases, frequencies and magnitudes. This 
makes interpretation of EEGs a challenging task. Medical 
doctors, depending on how different is their practical 
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experience, may interpret a same EEG differently. Hence it 
becomes quite important to use some intelligent computing 
tool, which should be able to analyze and interpret EEG 
signals. In [8] Manyakov et. al. suggested analyzing EEG by 
the analysis of its Fourier transform using MLMVN. This 
approach was pretty natural, since MLMVN works with 
complex-valued inputs and can be therefore used to analyze 
complex-valued information. This analysis was used in [8] to 
decode EEG signals in a brain/computer interface. In [22], 
[23] it was suggested to use another complex-valued neural
network to analyze the dual-tree complex wavelet transform
(DTWCT) [24] of EEG. This method was used to diagnose
epilepsy. We would like to use here MLMVN as a
sophisticated intelligent EEG signal classifier for epilepsy
patients, in order to improve their treatment and distinguish
EEGs of patients with epilepsy in remission and of those
people who are healthy. This intelligent EEG signal classifier
would also help treat those who are not yet fully have been
the victims of epilepsy that is patients from a group of risk.

II. DATA GATHERING AND FEATURES EMPLOYED

A. EEG data set
To study EEG signals, we used a commonly employed

benchmark dataset [25] containing data for five different 
classes. Class A consisting of all the EEG’s of healthy 
patients, B, C, and D consists of EEG’s of patients with 
remission, while Class E consist of EEG’s of patents that are 
unhealthy in terms of epilepsy. Hence our dataset consists of 
five subsets. Each of these subsets contains EEGs of 100 
volunteers recorded during a period of 23.6 seconds and 
sampled in 4097 samples. Subsets A and B contain a single 
channel EEGs recorded from healthy volunteers. Subset C 
contains EEGs recorded from hippocampal opposing 
hemisphere of sick patients before seizures [22]. Subset D 
consists of EEG recordings obtained from the epileptogenic 
region in the sick patients before seizures [22]. Subset E 
consists of EEGs containing seizures recorded from sick 
volunteers [22]. As it was mentioned above, the original data 
contain 4097 samples in each EEG. We did not use the last 
sample, thus we worked with EEG containing 4096 samples.  

B. Features used for classification
To analyze a 4096-sampled EEG in the Fourier or

DTCWT domain, it is necessary to have a relevant set of 
features using which it should be possible to perform this 
analysis. In fact, for example, a Fourier transform of such a 
4096-sampled EEG contains 2048 frequencies, but EEGs 
from all five subsets A-E do not decisively differ from each 
other in medium and high frequencies. This means that the 
activity of a brain in those frequencies mostly is not different 
in different groups of sick and healthy people. However, this 
activity differs in EEGs of sick and healthy people in low 
frequency domain. Fig. 1 depicts magnitudes of the first 256 
Fourier transform coefficients taken from representatives of 
each of A-E subsets. 

Nevertheless, the analysis even of 256 spectral 
coefficients using MLMVN or any other machine learning 
tool should not be efficient. EEGs of different healthy and 
sick people are different from each other. For example, EEGs 
of sick people show some abnormal activities in some 
frequencies, but while shapes of these activities are similar, 
certain frequencies where these abnormal patterns can be 
found, are distinct, even if they are close to each other. The 
same properties are demonstrated by DTWCT transforms of 

EEG. This means that it is necessary to extract some specific 
statistical features from the frequency domain data. We 
should look for some targeting features, which are similar for 
representatives from the same class of EEGs, but different 
for representatives from other classes. It was proposed in 
[22] where classification of EEGs based on DTCWT was
studied to use the following 5 statistical characteristics as
features for classification. These characteristics include (see
Table I) mean (complex), engineered complex “minimum”,
engineered complex “maximum”, engineered complex
“standard deviation”, and engineered complex “median”. We
call the last four complex-valued characteristics
“engineered” because they are complex numbers artificially
synthesized by finding corresponding real-valued
characteristics separately over real and imaginary parts of the
corresponding complex numbers followed by creation
complex numbers from them by their pairing.

TABLE I. STATISTICAL CHARACTERISTICS USED 

Characteristic Mathematical expression 
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However, these characteristics except of mean are in fact 
artificial. They represent statistical characteristics of real and 
imaginary parts of complex numbers separately. Being 
merged into complex numbers they may not represent actual 
behavior of complex numbers or may represent it 
incompletely. A major issue here is that when we consider 
real and imaginary parts of complex numbers as separate 
abstract real numbers, we may completely lose circular 
nature of phase and very important information contained in 
phase. This issue becomes especially sensitive when we need 
to find characteristics relevant to some complex-valued 
random process or such a selection of complex numbers as 
Fourier transform or DTCWT. This problem is 
comprehensively studied in [26] where there is a very wide 
observation of first and second order moments suggested by 
different authors (particularly in [27], [28], [29]) relevant to 
complex-valued random processes and problems related 
complex-valued signal and data processing is presented. Let 
x and y are samples of the random variable. Then their 
covariance as the central moment is defined as follows [26]: 

( ) ( )( )cov , ( ) ( )x y E x E x y E y = − −  , (1) 

where E is an expectation and bar stands for complex 
conjugation.  

Based on (1) the pseudo-variance of x [26] should be 
defined as follows 
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( ) ( )( )2 cov , ( ) ( )x x x E x E x x E yσ  = = − −  
 , (2)

where bar stands for complex conjugation. Evidently 2
xσ ∈ 

that is it is in fact complex because 

( ) ( )
Re Im

2 2 2
Re Imcov , 2 cov ,x x xx x i x xσ σ σ= = − + ∈  (where i 

is an imaginary unit) whenever x ∈ .

a) Magnitude of the Fourier transform of the representative from subset A
(first 256 Fourier coefficients)

b) Magnitude of the Fourier transform of the representative from subset B
(first 256 Fourier coefficients)

c) Magnitude of the Fourier transform of the representative from subset C
(first 256 Fourier coefficients)

d) Magnitude of the Fourier transform of the representative from subset D
(first 256 Fourier coefficients)

e) Magnitude of the Fourier transform of the representative from subset E
(first 256 Fourier coefficients)
Fig. 1. Magnitudes of the Fourier transforms of EEGs 

Then it follows from (2) that the pseudo-variance of N 
samples 1,..., Nx x  of random variable X (the pseudo mean
square deviation) should be defined as 
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The complex correlation coefficient is used as a measure 
for the degree of impropriety of x [26]. It is defined [29] as 
follows 

( )
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ρ = , (4) 

where bar again stands for complex conjugation. 
Evidently ρ ∈  because ( )cov ,x x ∈ whenever x ∈ .

Let us now define the sample complex correlation 
coefficient Xρ  for N samples 1,..., Nx x  of random variable
X. Taking into account (4) we obtain the following
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Empirically it looks that the complex pseudo-variance (3) 
and the complex correlation (5) should better represent 
closeness and distinctions among samples of complex 
variables X and Y than synthesized ‘‘median’’, ‘‘min’’, 
‘‘max’’, and ‘‘standard deviation’’ from Table I. It is very 
important that (3) and (5) are complex numbers and they in 
fact should not significantly differ from each other if X and 
Y are similar in probabilistic/statistical terms, but they 
should be quite different from each other when X and Y are 
probabilistically/statistically different from each other. This 
should also be true when X and Y represent Fourier or 
DTCWT spectra of EEGs taken from healthy people, 
patients with epilepsy and patients with epilepsy in 
remission. Hence we will use in our experiments the 
following three features to describe each EEG (its Fourier or 
DTCWT transform): 

1) Complex expectation (mean)
1
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2) Complex pseudo-variance (3) 
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3) Complex correlation coefficient (5) 

III. EXPERIMENTAL TESTING

Our goal was to perform the same classification 
experiments, which were performed in [22], but using 
Fourier transform along with DTCWN for EEG 
representation, a set of three features, which was just 
determined instead of those features listed in Table I, and 
MLMVN as a machine learning tool instead of another 
complex-valued neural network used in [22]. In all our 
experiments, we used 10-fold cross-validation (as it was 
done in [22]). 

A. Experiment 1
The goal in this experiment is to classify only healthy

people and patients with epilepsy (clusters A and E from the 
dataset) based on their DTCWT and Fourier transform. Thus, 
here we have to solve a 2-class classification problem. We 
used 10-fold cross-validation in this experiment. 

B. Experiment 2
This experiment extends Experiment 1 involving the

cluster D (sick patients before seizures). We again used both 
DTWCT and Fourier transform to represent EEGs. Hence in 
this experiment we are dealing with a 3-class classification 

problem with the following three classes: 1) healthy class (all 
representatives from subset A were included); 2) patients 
with epilepsy having seizure-free intervals (all 
representatives from subset D were included); 3) patients 
with epilepsy having seizure (all representatives from subset 
E were included). We again used 10-fold cross-validation 
here. 

C. Experiment 3
Experiment 3 was operated by involvement all five

subsets from the dataset. In this experiment, we classify 
EEGs as belonging to the following three classes. The first 
class was formed from subsets A and B (all healthy people), 
the second one was formed from subsets C (sick patients 
before seizures) and D (patients with epilepsy having 
seizure-free intervals), and the third one was formed from the 
representatives of class E (patients with seizures). We used 
10-fold cross-validation applied to the data extracted from
the corresponding EEGs using both DTWCT and Fourier
transform.

IV. RESULTS 

Our experimental results are excellent. All of them are 
summarized below in Table II.  

TABLE II. EXPERIMENTAL RESULTS 

Experi-ment 

Fourier Transform Dual-tree complex wavelet transform (DTCWT) 

MLMVN 
topology 

# of 
learning 
iterations 

(mean over 
10 

experiments
) 

Classification 
accuracy 

(mean over 
10 

experiments) 

Level 1 Level 2 

MLMVN 
topology 

# of learning 
iterations 

(mean over 
10 

experiments) 

Classification 
accuracy 

(mean over 10 
experiments) 

MLMVN 
topology 

# of 
learning 
iterations 

(mean over 
10 

experiments
) 

Classification 
accuracy 

(mean over 
10 

experiments) 

1) A-E 3-2-1 71 100% 3-1 12 100% 3-3-1 6 100% 
2) A-D-E 3-2-3 83 100% 2-3 423 100% 3-2-3 27 100%
3) AB-CD-E 3-4-3 84 100% 4-3 210 100% 3-4-3 26 100%

We used MLMVN-SM-LLS as it is presented in [18] 
with a very slight modification in the learning rule described 
in [30], which makes it possible to use arbitrary complex-
valued input in MVN. We employed MLMVN with a single 
hidden layer and the output layer. A network topology is 
represented everywhere as n-N-M where n is the number of 
network inputs, N is the number of hidden neurons and M is 
the number of output neurons. 

In Experiments 2 and 3 where we worked on solving 3-
class classification problems, we used 3 output neurons 
performing binary classification. The output of the network 
was determined in such a case using the winner takes it all 
technique suggested with regard to MVN in [31] and 
employed for MLMVN-SM-LLS in [18]. The global 
threshold of 0.78 radian was used for soft margins in 
MLMVN. After publication of this paper, software and data 
used here will be available online1. Hence, the use of the 
features, which we suggested in this paper, and MLMVN as 
a machine learning tool improves the results presented in 
[22]. We got a stable 100% classification rate in all our 
experiments for both DTWCT and Fourier transform using 

1 Software and data are available here  
https://www.freewebs.com/igora/Downloads.htm 

only three features. Very small networks were enough to use 
to get the 100% classification accuracy. In fact, the largest 
network, which we employed in Experiment 3, contains only 
7 neurons (4 hidden neurons and 3 output neurons). The 
learning process converges very quickly. Actually, this is 
basically a real time immediate convergence. It is important 
that while the authors of [22] were skeptical on the use of 
Fourier transform as a source of features for EEG analysis, 
we have shown here that it also can be used (while the 
learning process for DTWCT requires less iterations for its 
convergence).  

V. DISCUSSION AND CONCLUSIONS

We suggested to use complex expectation (mean), 
complex pseudo-variance and complex correlation 
coefficient as three features to classify EEGs in the 
frequency domain. It was justified why these features 
characterize complex-valued data better than those applied 
separately to real and imaginary parts. We have also shown 
that along with DTWCT, which was earlier proven as a very 
good space for EEG representation, Fourier transform can 
also be used for the same purposes. It was also shown that 
MLMVN can successfully be used as an intelligent EEG 
classifier. The proposed approach should be further 
developed and tested using other appropriate EEG data. It 
should be attractive to use it not only for epilepsy diagnostics 
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and epilepsy-related EEG analysis, but for classification of 
EEGs related to other health issues. This work also confirms 
high importance of the frequency domain representation of 
data, which are related to brain activity (since biological 
neurons exchange information with each other in terms of 
frequencies of spikes generated). It also shows how 
important it is to use a proper tool (a complex-valued neural 
network that is MLMVN in our particular case) for 
frequency domain data analysis.  
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