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Abstract—Cloud computing infrastructures and datacenters
depend on intelligent management of underlying CPU, memory,
network, and storage resources. A variety of techniques such as
load balancing, load consolidation, and remote memory allocation
are used to maintain a fine balance between conflicting goals of
high performance, and low costs and energy consumption. To
meet these goals, successful prediction of the workloads is an
important problem. By accurately predicting the resource uti-
lization of host machines, datacenter owners can better manage
the available resources. This paper presents a host resource usage
prediction approach, based on a Multilayer Neural Network with
Multi-Valued Neurons (MLMVN). An enhancement is further
implemented to MLMVN to make it suitable for cloud datacenter
applications. The approach is evaluated on real world load traces
from Google’s cluster data, as well as two grid based load traces.
The algorithm is compared against some current state-of-the-art
host-load prediction algorithms to show its accuracy, as well as
performance gains.

Index Terms—cloud datacenter, workload prediction, complex-
valued neural networks

I. INTRODUCTION

Cloud computing provides on-demand computing resources

such as CPU, memory, networking, and storage for a variety

of big data applications. The infrastructure for implementing

clouds is a pool of resources hosted on large clusters of

physical machines in datacenters. The sharing of this pool of

resources within host machines provides benefits of scale, and

results in low costs to use, high performance, energy savings,

and elasticity. A variety of dynamic, online techniques such as

load balancing, load consolidation, remote memory allocation,

memory ballooning, etc. have been implemented to achieve the

goals. However, using these techniques without considering

the ever-changing resource requirements of the hosts can

lead to severe issues. For example, consolidating hosts with

large resource requirements can result in resource starvation,

which in turn will cause degradation of performance. Similarly,

remote memory may allow one host to access large amounts

of memory, but may degrade performance on another host that

is offering the remote memory. Therefore, it is imperative to

accurately predict future host resource usage (host load) in

advance, to intelligently make these management decisions.

In general, longer (hours), but finer-grained predictions allow

better management than shorter (minutes), coarse predictions.

Another concern while predicting cloud workloads, is the

computational speed of the solution used. The time spent

predicting is overhead performed in real time, and needs to

be minimized, while maintaining a high accuracy.

Multi-layered neural networks with multi-valued neurons

(MLMVN) are complex-valued neural networks with a

derivative-free backpropagation learning algorithm. They have

been shown to outperform competing machine learning tech-

niques in a number of problems unrelated to cloud computing

( [1], [2], [3]). MLMVNs converge quickly, and can predict

multiple steps into the future without a large propagation of

previous errors. Additionally, as shown by [4], complex-valued

neural networks could be converted to algorithms suitable for

quantum computing. The speed-up due to utilizing quantum

computers in the prediction phase of datacenters will allow

even finer grained prediction across thousands of machines. A

preliminary version of this approach has been briefly discussed

in [5]. All of this motivates the application of MLMVN to the

problem of host load prediction for cloud datacenters.

The main contributions of this paper include a novel cloud

host load prediction mechanism based on a modified MLMVN.

Second, the paper describes an enhancement to MLMVN

that mitigates some of the issues associated with it, making

it suitable for host load prediction in a cloud computing

environment. The overall approach is rigorously evaluated,

and compared against a number of other host load prediction

methods. Through all the results, the approach shows state-of-

the-art short-term and long-term prediction performance, in

terms of both accuracy and computational speed.

The rest of the paper is divided as follows. An overview

of current host load prediction techniques is given in Sect.

2. The proposed method is described in Sect. 3. Experiment

results and comparisons are presented in Sect. 4. The paper is

concluded in Sect. 5.

II. RELATED WORK

According to [6], research in host load prediction has been

performed using Bayesian networks, artificial neural networks,

decision trees, support vector machines, arima models, and

cubic smoothing splines. Further, a number of other mathemat-

ical tools have been employed to solve the problem including
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Fourier transforms [7], chaos theory [8], and fractal methods

[9]. For grid-based systems, [10] utilized the Markov model

for single-step predictions while [11] proposed a Kalman filter

and autoregressive (AR) based multi-step method. The work

in [12] used a feedforward artificial neural network (ANN)

and achieved higher accuracy than other methods.
A comparison between Google cluster and grid system

host loads shows that Google loads exhibit higher variance

and noise, with lower seasonality [13]. Hence, it is more

challenging to predict host loads in a cloud than in a grid. It

has been shown that classical time series prediction methods

such as arima models underperform when used in cloud

environments [14].
The authors of [14] proposed a cloud load prediction

method based on Bayes model. However, this approach only

predicted the mean host load value, and did not aim to

make fine-grained predictions. For fine-grained predictions,

[15] proposed combining phase space reconstruction with an

evolutionary algorithm. This method showed limited capability

in multi-step ahead predictions [16]. Moreover, the prediction

performance of this method is closely related to the parameters

chosen, as the evolutionary algorithm is a stochastic global

search method which may get stuck in local optimas [17].
A literature review reveals two methods that currently offer

the best accuracy results for fine-grained host load prediction.
The first method used an autoencoder as the pre-recurrent

feature layer of an echo state network (ESN) to perform host

load predictions multiple steps in the future [17]. However,

this method has some limitations. ESN uses a manually chosen

leaking rate to control the degree of delays, which reduces its

generalization ability when applied to different load traces.

Moreover, the random initialization of a large reservoir, could

degrade the performance of ESN when applied to noisy loads.
Currently, the approach described by [16] yields the best

prediction accuracy for host load time-series prediction. They

used the long short-term memory (LSTM) model in a recurrent

neural network (RNN). By learning long-term dependencies,

this approach demonstrated high accuracy for a large number

of timesteps into the future even for noisy cloud host loads.

However, RNNs suffer from computationally long training

times due to the backpropagation algorithm being applied to

recurrent layers. Even with optimizations, feed-forward neural

networks are generally faster than RNNs.
As opposed to these approaches, the proposed prediction

mechanism utilizes MLMVN which is a feed-forward neural

network, utilizing complex-valued neurons. This offers higher

functionality, better generalization capability and simplicity

of learning. Additionally, MLMVN learning is derivative-free,

and avoids falling into local optimas [2]. The method is used

to achieve both short-term and long-term predictions.

III. BACKGROUND

This section discusses the core details of MLMVN (in-

put/output structure, neuron structure, activation function,

error-correction rule, and backpropagation algorithm) to repro-
duce the results of this paper. Interested readers are encouraged

to refer to [2] for a more thorough understanding of MLMVN.

A. Multi-Valued Neurons and MLMVN

The main distinction of MLMVN as compared to the classi-

cal feedforward neural network, is that its building blocks are

Multi-Valued Neurons (MVN) with complex-valued weights.

Using complex-valued inputs/outputs, weights and activation

functions, it is possible to increase the functionality of a single

neuron and a neural network, to improve their performance,

and to reduce the training time ( [3], [4]).

MVN was initially introduced as a discrete MVN in [2].

A continuous MVN was then introduced in [18]. This paper

employs a continuous MVN. It implements a mapping between

n inputs and a single output. All real-valued inputs (xr) need

to be in the range [0.0, 1.0] and are initially transformed to

complex-valued inputs (x). The complex-valued outputs (y)

are transformed back to real values (yr) at the end.

x = eixr

yr = arctan2(yimag, yreal)

While MVNs inputs and output are complex numbers located

on the unit circle, its weights are arbitrary complex numbers.

An input/output mapping of a continuous MVN is described

by a function of n variables

f(x1, ..., xn) = P (w0 + w1x1 + ...+ wnxn)

where x1, ..., xn(xj ∈ Ek, j = 1, ..., n) are neuron inputs

and w0, w1, ..., wn are the weights. P is the activation function

given by

P (z) = eiArg(z) = z/|z|

where z = w0 + w1x1 + ... + wnxn is the weighted sum.

Arg(z) is the main value of the argument of the complex

number z. Thus a continuous MVN output is a projection of

its complex-valued weighted sum onto the unit circle.

The MVN learning for hidden neurons is based on the error-

correction learning rule as described in [2], [18].

Using the described MVNs, the MLMVN is con-

structed. The MLMVN backpropagation learning algorithm

is derivative-free and it is based on the generalization of the

error-correction learning algorithm for a single MVN. This

algorithm was proposed in [2] where it is described in detail.

The batch version of this algorithm, used for this paper was

proposed in [19].

B. Time Series Forecasting

Previously MLMVN has been considered for time series

prediction of oil well production [1]. Time series forecasting

can be formulated as a classification problem, with n past

values of the time series (host loads in this case) as inputs and

the n+1st value as the output. Presumably, there exists some

functional dependence among the series members, according

to which the n+1st member’s value is a function of a certain

number of preceding n members’ values.

xn+1 = f(x0, ..., xn)
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TABLE I
PARAMETERS FOR MLMVN AND LSTM-RNN

Network Parameters MLMVN LSTM-RNN
No. of Inputs 24 24
No. of neurons in Hid-
den layer 1

32 128

No. of neurons in Hid-
den layer 2

64 -

Learning rate 1/(no.(weights)) 0.05
Iterations 150 90

Suppose the historical data of host load usage is the time series

x0, x1, ..., xr. A training set is formed from this time series by

using overlapping subsets of n+1 values. MLMVN is trained

on the training set, using n values as input and the n+1st value

as the desired output in each subset. The network weights

learned through training can be thought of as an approximation

of the function f . Therefore, using this approximate f̂ , future

values of host loads can be predicted as follows:

x̂r+1 = f̂(xr−n+1, ..., xr)

x̂r+2 = f̂(xr−n+2, ..., xr, x̂r+1)

where x̂ is the predicted value of x. Multi-step ahead pre-

diction is achieved by performing repeated one-step ahead

prediction. At each step the predicted value is used as part

of the next step’s input. Thus, as many points as required in

the future (called prediction window) can be predicted.

C. Minimizing Dependency on Initial Weights

A potential drawback of using MLMVN, is its high de-

pendence on the initial random weights chosen. This results

in the quality of network training varying heavily across

different runs for the same dataset. To mitigate this problem, a

batch learning algorithm based on complex QR decomposition

was introduced for MLMVN in [20]. In [19], a linear least

squares (LLS) based batch algorithm was proposed for a

complex-valued neural network with a single hidden layer.

The algorithm proposed adding adjustment factors to all the

weights after each iteration of training. The algorithm works

as follows. In each iteration of training 1) Calculate the

errors for all training samples using current weights. 2) Create

an overdetermined system of linear algebraic equations for

‘adjustment factors’. This system is given by the following

∆wh
0
+∆wh

1
xj
1
+ ...+∆wh

nx
j
n = δhj

Where, for the hth neuron, and the jth training sample, ∆wh
i

is the weight adjustment factor for the neuron’s ith weight,

xj
i is the ith input, and δhj is the calculated error for the

neuron. 3) Solve this system of equations for adjustment

factors using LLS. 4) Adjust weights of all neurons in a

layer simultaneously by adding the adjustment factors to the

corresponding weights.
This resulted in faster learning, ability to maintain big

learning sets, and improved generalization capability. For

this paper, the algorithm is generalized and implemented for

MLMVN with multiple hidden layers. For the rest of the paper,

MLMVN refers to the modified MLMVN.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

To evaluate the accuracy of the MLMVN based host load

prediction algorithm, experiments were performed on two

types of datasets. The cloud-based, noisy data from Google

clusters, and the more regular grid data from sahara and

themis datasets. The MLMVN model was built in Matlab.

A network with two hidden layers was chosen based on
observations from 100 host loads outside of the ones used

for the experimental evaluations. The choice of two hidden

layers is intuitive for time series predictions, since using only

a single layer acts as a powerful low pass filter, and averages

the output, ignoring local changes of the series to be predicted.

The two layers consisted of 32 and 64 neurons respectively.

Similar to previous methods, the number of inputs (preceding

values considered for prediction) was chosen to be 24.

For all the datasets, MLMVN is compared against LSTM

based RNN, and ESN. The two frameworks were built in

Python using the TensorFlow library, to the specifications in

[16] and [17]. The MLMVN neural network parameters are

listed in Table I. For comparison, LSTM-RNN model’s optimal

parameters are also shown. To compare the accuracy of the

various methods, the Mean Square Error is calculated as

MSE = 1/N
N
∑

i=1

(yi − pi)
2

where N, yi, and pi are the length of the prediction window,

actual values, and predicted values respectively.

B. Google Cluster Data

The Google cluster dataset [21] traces approximately

670000 jobs, and 40 million tasks across 12000 host machines

during 29 days. The trace includes a variety of parameters,

including CPU and memory usage of the tasks, as well as the

location of the tasks on host machines. For this evaluation, the

CPU usage of individual host machines for the 29 days were

utilized to compare all methods. These values were obtained

by aggregating the CPU usages of all the tasks residing on

a host (located under the task usage directory) during a time

sample. The cluster data provides information every 5 minutes.

Thus, the 29 day load trace for each host consists of 8352

data points. Since the Google trace provides CPU usage as a

fraction of utilization in the range [0.0, 1.0], no further scaling

is performed for these evaluations. For reference, the host load

of one machine is shown in Fig. 1. The lack of any obvious

pattern should be clear from this figure.

Similar to the other methods being compared, the first 26

days were used as training/ validation sets, while the last 3

days (day 27 to day 29) were used for testing. The results that

follow indicate predictions for the testing set.

To demonstrate the efficacy of MLMVN based load pre-

diction, predictions were performed on 4000 host machines

from the Google cluster. These multi-step predictions were
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Fig. 1. Load trace for sample Google host - 29 days

done for prediction windows of 30 minutes (6 steps), 1 hour

(12 steps), 1.5 hours (18 steps), 2 hours (24 steps), 2.5

hours (30 steps), and 3 hours (36 steps). Fig. 2 shows the

MSE achieved by MLMVN, LSTM-RNN, and ESN for each

of these prediction window sizes. It can be observed that

MLMVN outperforms the other two prediction methods, and

maintains its better accuracy even as the prediction window

size is increased. Specifically for predictions 30 minutes into

the future, MLMVN shows an MSE of 0.0032.

Fig. 2. Average MSE comparison for different prediction windows

For additional comparisons on the Google cluster data, the
Cumulative Distribution Functions (CDFs) of MSEs for two

prediction windows (30 minutes and 1 hour) are presented

in Fig. 3. For reference, results of real-valued feed-forward

neural networks (ANN) and Hybrid-Autoregression (AR) built

according to [12] and [11] are also shown. It can be deduced,

that MLMVN outperforms all other methods, for all prediction

window sizes. Methods such as the hybrid AR have a large

variance in their accuracy, as opposed to MLMVN which

shows consistent accuracy for most of the Google cluster hosts.

For 30 min predictions, about 42% of predictions made by

the hybrid AR show an MSE greater than 0.005, compared to

approximately 18% for MLMVN. The benefits are even more

apparent in the 60 min predictions.

C. Grid Data

In order to evaluate MLMVN based predictions on a dif-

ferent type of load trace, experiments were also performed on

the grid-based loads provided by [22]. Specifically, two traces

were chosen, namely the sahara and themis traces. These data

traces include four days worth of data, sampled at one second

each, for a total of 345600 data points each. The sahara dataset

belongs to a compute server, while the themis dataset belongs

to a desktop. The load is the number of processes that are

running or are ready to run (the length of the scheduler’s ready

queue). For the original trace, the kernel sampled the length

of the ready queue at a fixed rate, and averaged a window of

previous samples to produce a load average.

For evaluation in this paper, the load traces were scaled to a

range of [0.1, 0.9]. Similar to other methods being compared,

each load trace was normalized using
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(a) 30 min prediction (b) 60 min prediction

Fig. 3. CDFs of prediction MSEs for different methods

(a) sahara

(b) themis

Fig. 5. Average MSE of prediction in two grid load traces.

xi = 0.1 +
xi − xmin

xmax − xmin

(0.8)

where xmax and xmin are the maximum and minimum

value of the load trace, respectively. For reference, a sample

of the sahara trace is shown in Fig. 4. It can be observed, that

compared to the Google cluster data trace, this trace is more

regular, and has a visible pattern to it.

To compare accurately with the other state of the art

methods, each load trace was split 80% of its length into a

training set and the rest was the testing set. The prediction

results are shown in Fig. 5. The results for LSTM-RNN

and ESN are as reported by [16]. According to the results,

MLMVN shows higher accuracy as compared to both LSTM-

RNN and ESN, for all the prediction lengths.

Fig. 4. Load trace sample from grid-based sahara data

The accuracy gains of MLMVN vs LSTM-RNN are least

prominent in the themis dateset, compared to other datasets.

The reason is that of all the loads evaluated, the themis

dataset appears to be most regular, and predictable. Thus, most
sophisticated algorithms achieve satisfactory performance. In

spite of this, there is a visible improvement in accuracy with

MLMVN across all prediction windows.
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TABLE II
TIME TO TRAIN VS ACCURACY

Method Time to train (s) Avg. 6 step MSE
MLMVN 38 0.0032

LSTM-RNN 105 0.0036
ANN 35 0.0052

D. Prediction Samples

In order to identify the difference in quality of MLMVN

predictions between the cloud and grid loads, Fig. 6 presents

30 minute predictions in a sample from the Google cluster

data, as well as the sahara data set. It can be observed that

in the more regular sahara dataset, the predictions follow the

actual loads closely. On the other hand, as expected, in the

noisy Google cluster sample, the predictions follow the actual

loads, albeit not as closely as the sahara sample.

(a) Google cluster sample

(b) sahara sample

Fig. 6. Actual loads vs Predicted loads

E. Time to Train Analysis

As previously noted, RNNs tend to train slower than similar

Feed Forward Neural Networks. The implementations used

for evaluation in this paper were executed on Ubuntu 16.04

machines with 8GB of RAM. The avg. training time for a

single host in the Google cluster data for MLMVN was 38s

versus LSTM-RNN’s 105s. Table II showcases the results

for 6 step predictions. MLMVN offers the most beneficial

balance of time to train and accuracy. It should be noted

that the MLMVN implementation is on Matlab, which should

have a general disadvantage in computational speeds versus

Python. Moreover, LSTM-RNN needs to train separately for
each prediction window size needed (6 steps, 12 steps, etc).

MLMVN uses iterative prediction, thus after training only

once, as many future steps as required can be predicted.

F. MLMVN vs Vanilla-MLMVN

To compare the difference between the MLMVN (with

LLS algorithm) used in these evaluations and vanilla-MLMVN

(without LLS algorithm), the networks were trained on the

same host load 10 times. The standard deviation of MSEs

for MLMVN was 0.000067 as opposed to vanilla-MLMVN’s

0.007. The best MSE in each case was 0.001701. Thus, while

both methods achieve similar MSEs, the vanilla-MLMVN

needs to be trained multiple times to obtain best results. In

contrast, MLMVN trains consistently, making it suitable for

online, real-time predictions in cloud computing environments.

V. CONCLUSION

This paper proposed an approach to predict host resource

usage in cloud environments using complex-valued neural net-

works (MLMVN). The real-time prediction of host loads could

be utilized for a variety of datacenter management concerns

such as load balancing, load consolidation, remote memory

allocation, etc. Through extensive experimental analysis, it was

demonstrated that the proposed prediction solution produces

state-of-the-art accuracy for real world Google cluster and grid

load traces. Additionally, an analysis of the computational time

revealed its superiority compared to other high-accuracy ap-

proaches that utilize recurrent neural networks. The complex-

valued network also has the potential to be transformed into a

quantum computing algorithm, which could offer even greater

speed benefits in the future.
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