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Abstract—The competition on the world market of 
smartphones and tablets between the acknowledged leaders on 
one side and the numerous newcomers on the other makes 
them all look for new solutions that open additional 
opportunities for the developers and customers without the 
growth of the price. The progress with new opportunities turns 
possible when it happens simultaneously in the software and 
the hardware. The brightest one example of the above 
statement can be observed for the sensors of mobile devices. It 
is totally impossible to imagine modern smart devices having 
no sensors, as the progress of last decade (SLAM, face ID, 
OCR, pattern recognition etc.) was achieved thanks to 
considerable improvements of sensors and the algorithms for 
their processing. The paper addresses the questions of 
characteristics analysis of such mobile sensors as 
accelerometer, magnetometer and gyroscope from the point of 
view of their application in indoor navigation field. Signals of 
BLE beacons and their processing methods are investigated as 
well. The sensor fusion task is briefly discussed and several 
practical examples are given. 
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I. INTRODUCTION

Mobile sensors have been coming into our life more and 
more. Besides, being used widely in smartphones, they 
started a new branch in mobile industry – wearable fitness-
trackers and smart watches. Almost all leading technology 
companies, like Apple, Samsung or Xiaomi produce such 
devices and integrate them into their infrastructure. 
Moreover, mobile sensors are the basis for such modern and 
greatly developing fields like Augmented Reality (AR) 
where they serve, for example, for improving the detection of 
markers on the scene, or Virtual Reality - for precise head 
pose tracking. Another popular and important scientific area 
of mobile sensors application is known as Simultaneous 
Localization and Mapping or SLAM. Finally, indoor 
navigation, which can be considered as GPS for indoor 
environments, relies greatly on smartphone inertial sensors 
[1] - [8]. Despite the fact that there are many different sensor
types, some of them are more common and greatly applied in
the mentioned applications. Namely, they are accelerometer
(A) which measures the linear acceleration of a device,
magnetometer (M) that detects the Earth magnetic field 
along three axis of device coordinate system, and gyroscope 

(G) which measure angular velocity. The combination of
these three sensors, known as Inertial Measurement Unit
(IMU), is widely used for determination of device pose in
global coordinate system. It is worth noting that mobile
sensors can be made of different quality. Recently, the so-
called Micro-Electro-Mechanical Systems (MEMS) sensors
have been attracted great interest. They are widely applied in
smartphones and different wearable devices. As it will be
shown, they can provide rather noisy signals but their main
benefit is their accessibility due to the low price.

Besides the IMU, Wi-Fi access points and Bluetooth Low 
Energy (BLE) beacons can also be considered as sensors. 
Numerous companies, like Estimote, Infsoft, Senion and 
many others, offer their Software Development Kits, which 
utilize the signals from BLE and/or Wi-Fi sensors as well as 
IMU data for finding a user position as a solution of Indoor 
Navigation task. BLE and Wi-Fi data signals differ greatly 
from the inertial sensor data. While the IMU signals 
possessing long-term drift (G) or variations (M and A) 
because of different metal things or internal sensor noise but 
are rather accurate for short period of time [13] - [14], BLE 
signals in opposite allow obtaining small positioning error in 
long-term perspective, but fluctuate greatly around its true 
values. As a result, modern indoor navigation systems 
provide fusion of BLE and IMU data for their mutual 
improvement. Such solutions are known as Hybrid Indoor 
Localization and Navigation (HILN) systems [17]. The 
HILN system is a drift-free, low-cost, light-weight, easy-to-
integrate IPS, enabling ubiquitous navigation of pedestrians 
in buildings equipped with beacons or Wi-Fi. The article is 
organized as follows. At first, features of A, M and G sensor 
signals are analyzed as well as signal processing methods for 
IMU-based navigation system are discussed in Section 2. 
Next, BLE sensor signals are investigated and methods for 
their processing are discussed. Section 4 is devoted to the 
fusion technique based on a particle filter. Finally, practical 
results of three mentioned positioning approaches are 
provided for comparative analysis. 

II. SIGNAL PROCESSING FOR THE IMU NAVIGATION

IMU as a combination of mainly three sensors, A, M and
G, is a basis for inertial navigation system (INS) which is 
one of the important parts of Indoor Navigation systems. 
Usually INS determine a user position by implementing a 
Pedestrian Dead-Reckoning (PDR) algorithm [1] or its 
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numerous modifications (see for example [2]). At the first 
stage of the algorithm, a user step must be detected [3]. Next, 
the user step length is evaluated [6]-[8] followed by the 
attitude and heading estimation by one of the fusion 
algorithms. Finally, IMU readings are transformed from the 
local coordinate system to a global one using the determined 
device orientation angles [12]-[13]. Then the detected steps 
are summed up to get the user track in the building. 

However, there are some challenges while designing 
INS. First of all the IMU readings are spoiled with noise. Let 
us show this fact by analyzing A and M sensor signals for the 
three test cases: #1. Smartphone lays on the table 
immovable; #2. User holds the device in hand and stays in 
static position; #3. User walks straight ahead. For 
comparative analysis, signals were harvested with Samsung 
Galaxy Note 5 (premium class smartphone) and Huawei P8 
Lite 2017 (business class smartphone) and the mean square 
error (MSE) was calculated as an indicator of signal 
variations. It is worth noting that each sensor provides 
measurements as a 3D vector containing X, Y and Z axis 
component values of a parameter. 

Results for A sensor data represented in Table I show that 
even in stationary cases there are fluctuations and their level 
depends on the smartphone class, i.e. the more expensive the 
smartphone, the better sensors are built in. The same results 
are obtained for M sensor data (see Table II). The difference 
between MSE values between test cases 1 and 2 is up to 5 
times for Samsung Galaxy Note 5 and up to 7 times for 
Huawei P8 Lite 2017. It is worth noting that M readings 
suffer from numerous magnetic disturbances, which are 
available everywhere in modern buildings with their Wi-Fi 
spots and numerous obstacles made of steel.  

TABLE I. ACCELEROMETER DATA MSE VALUES 

grav. units ax ay az 
Test case 1 

Samsung Galaxy Note 5 0.0007 0.0007 0.0012 
Huawei P8 Lite 2017 0.0139  0.0157 0.0067 

Test case 2 
Samsung Galaxy Note 5 0.0176  0.0151  0.0199 

Huawei P8 Lite 2017 0.0374 0.0619 0.0403 

From practical point of view, the most important results 
are observed for the test case #3 when user moves. 
Accelerometer vector absolute values represented in Fig. 1 
show that the A sensor components are corrupted by noise. 
In order to find ways how to cope with that, the A signal 
spectrum was investigated (Fig. 2). It is seen that there is a 
harmonic at about 2 Hz which corresponds to the signal 
oscillations due to the user steps. At the same time, there are 
additional harmonics at the region from 5 to 10 Hz caused by 
the influence of sensor noise. Note that the amplitude levels 
as well as the number of spurious spectral components 
depend on the phone model.  

The other important facts can be found from the analysis 
of the influence of user movement on characteristics of M 
data. Results provided in Table II show that the MSE values 
of M signal components are reasonably increased for both 
analyzed devices. The difference is up to 3 times comparing 
to the stationary case #2. It is obvious that effective noise 
filtering is the first challenge to overcome on a way to an 
accurate user positioning and tracking. Especially it is 
important for A data because of its application for user step 

detection. The task of A sensor signal denoising has 
numerous solutions. They are the application of the 
Butterworth, Bessel, Chebyshev, Savitzky–Golay, moving 
average, Total Variation [18] or Kalman [19] filter.  

TABLE II. MAGNETOMETER DATA MSE VALUES 

µT mx my mz 
Test case 1 

Samsung Galaxy Note 5 0.0127 0.0109  0.0315 
Huawei P8 Lite 2017 0.0512  0.0418  0.0575 

Test case 2 
Samsung Galaxy Note 5 0.0574  0.0637  0.0263 

Huawei P8 Lite 2017 0.1696  0.2904  0.1021 
Test case 3 

Samsung Galaxy Note 5 0.3913 0.2370 0.2641 
Huawei P8 Lite 2017 0.5403  0.4350  0.3081 

Fig. 1. The raw and filtered 
accelerometer signals for test case 
#3 

Fig. 2. Fourier spectrum estimates 
of the raw and filtered 
accelerometer signals for test case 
#3 

The solutions differ from each other by the complexity, 
delay and quality of filtration. To our best knowledge there 
are no exact recommendations what algorithm must be used 
for the smartphone IMUs. Based on the held experiments, 
the highest performance for the A sensor was obtained from 
the Butterworth filter, which has the ‘smoothest’ frequency 
response in terms of having the most derivatives of its 
magnitude response being zero at the geometric center of the 
passband and the simplest transfer function in that the 
coefficients of the polynomial are easy to calculate. The 
result of filter application is shown in Figure 1 in temporal 
domain as well as in Figure 3 in spectral domain. It is clearly 
seen that the A signal becomes smoother due to the noise 
removal in high-frequency domain. It is known that MEMS 
gyroscope uses the Coriolis acceleration effect on a vibrating 
mass to detect angular rotation. The gyroscope measures the 
angular velocity, which is linear to rate of rotation. It 
responds quickly and accurately and the rotation can be 
computed by time-integrating the gyroscope output. But G 
sensor readings suffer from inertia. Without special 
treatment, the inertia causes the drift of the trajectory 
estimated by INS during the long tracks [13].  

TABLE III. MSE OF GYROSCOPE VECTOR VALUES VARIATIONS  

Rad. / sec. gx gy gz 
Test case 1 

Samsung Galaxy Note 5 0.0001 0.0002 0.0001 
Huawei P8 Lite 2017 0.0015  0.0025  0.0210 

Test case 2 
Samsung Galaxy Note 5 0.0032 0.0027 0.0018 

Huawei P8 Lite 2017 0.0078  0.0095  0.0103 
Test case 3 

Samsung Galaxy Note 5 0.0204 0.0143 0.0131 
Huawei P8 Lite 2017 0.0211  0.0277  0.0441 
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MSE values for G sensor signal components for three test 
cases represented in Table III show that there are G signal 
deviations which are caused by internal sensor noise (Case 
1), user hand trembling (Case 2) and user movement (Case 
3). As an example of inertia influence Fig. 3 shows the 
dependence of rotation angle around X axis on time. The 
data recorded by the smartphone laid on the table and rotated 
on 90 degrees anticlockwise at first and then backward to 
initial position. It is clearly seen that there is an integration 
error about -3…-5 degrees when device was returned to 
initial position. The same effects are observed for other 
components in case of corresponding rotations. Neither A 
and M sensors nor G can be considered error-free. While A 
signal is usually used for user step detection, G and M as 
well as A are mainly applied for determination of device 
orientation angles. Such fusion algorithms like Madgwick, 
Mahoney and Kalman fusion filters [14] allow neglect the 
drawbacks of each sensor and use their data for improving 
the estimate of orientation angles. 

III. SIGNAL PROCESSING FOR THE BLE NAVIGATION

Another group of data processing methods deals with the
signals from BLE beacons or Wi-Fi access points. They are 
known as Received Signal Strength Indicator (RSSI) signals. 
Practically, RSSI is a power of a received signal shifted by 
some offset value. Such signals do not suffer from the 
inertia, but are considerably influenced by fluctuations.  

Note that the trilateration is a key method for user 
position estimation in beacons-based indoor navigation 
systems (Error! Reference source not found.). It requires 
at least three distances to the beacons near the user for its 
operation. Distances are obtained from the RSSI values 
received by application of the so-called, path-loss model 
[16], which represents the dependence of RSSI values on the 
distance between the smartphone and the corresponding 
beacon. Let’s start the RSSI signal analysis with the 
investigation of number of received BLE packages. Test logs 
are recorded using Samsung Galaxy Note 5 device for the 
static test case when user stays immovable at the depicted 
(by diamond) point of the test room (Figure 5). There are 
nine installed BLE beacons, produced by Sensoro Comp.  

The analysis of the so-called RSSI received package map 
(Figure 6a) shows that not all packages are received for each 
beacon (the missing packages are outlined with red 
rectangles). Moreover, the gaps in the RSSI signals result in 
misselection of the beacons.  

Fig. 3. The rotation angle around X 
device axis obtained by integrating G 
data values 

Fig. 4. Trilateration problem 

Fig. 5. Trilateration problem 

a) b)
Fig. 6. RSSI package map before (a)
and after Kalman filtrering (b): - missing packets,

- beacons with RSSI that are selected for trilateration 

 For example, the selected beacons at the first step are the 
beacons with numbers 1 5 and 6, at the second – 1,5 and 4, 
and at the third – 5, 6 and 7, which makes no sense at all 
because the user is not moving and it is reasonable to expect 
the same selected beacons at each time moment. As a result, 
there is a discontinuous user positioning and trilateration can 
be not possible for some time samples.  

Fig. 7. Raw and Kalman-filtered RSSI signals for the beacon #4 in the test 
room 

Next cornerstone of BLE signals is the great fluctuations 
of RSSI values on time for the given beacon. Figure 7 
highlights this fact by an example of such a signal received 
from one of the beacons of the test room (Figure 5). As a 
result, the exact position can not be determined, and a user 
can be localized in some area only.  
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Both described challenges can be overcome by the 
Kalman filter for RSSI, described in [22]. The model of the 
process used in this case is 

RSSI
RSSI RSSI1 ti i 1 ii

RSSI 0 1 RSSI RSSIi i 1
i

 υδ     −  = +          −  υ  
  

  (1) 

where RSSIi and VRSSIi are predicted values of RSSI and 
the RSSI’s change rate for the i-th beacon; δti denotes time 
interval between current and previous received packages 
from the beacon; νi

RSSI and νi
VRSSI are random variables; 

and model of the measurement is 

[ ] RSSImeas i RSSIRSSI 1 0i measRSSImeas i

 
= + υ 

 
(2) 

where RSSImeas i and VRSSImeas i are measured values of 
RSSI and the RSSI’s change rate for the i-th beacon; νmeas

RSSI 
is a random variable. 

D. Gusenbauer [22] showed that this method (1)-(2) was
able to smooth the RSSI readings from all beacons. 
However, we found out that this filter could also serve as a 
useful tool to restore the missing packets with high 
confidence. For doing this, the following algorithm’s 
modification is applied – Figure 8. As you can see in Figure 
6b, there are no missing packets after filtration, which is the 
first but not the major achievement. The beacons for the 
trilateration will be selected correctly, i.e. we expect to 
observe no weird beacon “swaps”. The last thing achieved by 
the Kalman filtration is the smooth signal with no intense 
fluctuations (Figure 7). 

IV. SIGNAL PROCESSING FOR HIL NAVIGATION

No doubts, that the IMU component of a HILN system is 
very accurate for up to 1 minute navigation. However, this is 
not typical for the navigation to last only few minutes. 

X = A·X
P = A·P·AT +Q

Z != 0

K = [0 0]T K = P·HT / (H·P·HT+R)

X = X+K·(Z - H·X)
P = (I - K·H)·P

PREDICTION
STAGE

SMOOTHENING
FILLING THE 

GAP PACKETS

Fig. 8. The flow of Kalman filter for RSSI with restoring option: 

RSSIiX
RSSIi

 
=  
 

 is a state matrix, 
1 tiA
0 1

δ 
=  
 

 is a state-transition

model, P  is the covariance of the process noise, Z RSSIi=  is

observation, [ ]H 1 0=  is the observation model, Q  and R  are the 

covariance of the process and observation noise respectively. 

Hence, it sounds reasonable to expect the INS to have 
corrections from time to time to eliminate the accumulated 
drift. The data for the correction is typically obtained from 
the non-inertial systems, like, for example, BLE or Wi-Fi.  

There are several known methods for fusing the inerital 
and non-inertial navigation systems. Kalman filtering is a 
very powerful fusion tool able to automatically determine the 
trust rates to different sources. However, the monolite 
structure of the filter makes its modification to be a very 
complex task. For example, if a user walks near the wall with 
the accumulated drift to the wall side, then sooner or later 
user will find himself in the wall. The considered case is 
typical for long (>25 meters) and narrow (<3 meters) 
corridors. As the accuracy of BLE is less than 3 meters, then 
the correction will have never be effective. Hence, the most 
prospecting method for the fustion is a particle filter. The 
filter was first proposed in 1996 in [20] and since that time 
takes a considerable portion of cases that relate to Markov 
processes. The filtering has three stages that happen every 
iteration and one stage that happens once (in the ideal case) 
or several times. 

Figure 9 represents a comparison of three different 
approaches used for indoor navigation system design as well 
as the ground-truth marked with arrows. In Figure 9a you 
may observe a discontinuous change of user position and 
quite low positioning accuracy that corresponds to BLE-
based system. There is a drift of the trajectory caused by the 
residual noise of the gyroscope (Figure 9b). This is typical 
situation for IMU-based indoor navigation systems. Finally, 
as was expected, the best performance is shown by HILN 
based on particle filter. It provides very accurate positioning 
with no visible track drifting in time. In all experiments held 
with HILN, the accuracy positioning error varied in the range 
0.5 to 1 meter on an area of 15×6 meters, which is 
competitive to the leading commercial solutions. 

a) b) c)
Fig. 9. Example of user position tracking performed by BLE-based system 
(a), IMU-based system (b) and HIL navigation system based on particle 
filter (c) 

V. CONCLUSIONS

The indoor navigation is a prospective area for 
researching and commercializing the results of the researches 
as there is no unique opinion about the methods that must be 
used. The progress in the indoor navigation systems is 
provided the special techniques of signal processing, some of 
which were presented in current paper. 

REFERENCES 
[1] A. Ali and N. El-Sheimy, “Low-Cost MEMS-Based Pedestrian

Navigation Technique for GPS-Denied Areas,” Journal of Sensors,
vol. 2013, Article ID 197090, 10 pages, 2013. 
doi:10.1155/2013/197090. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



240 

[2] T. Zengshan, Z. Yuan, Z. Mu, and L. Yu, “Pedestrian dead reckoning
for MARG navigation using a smartphone.” EURASIP J. Adv. Sign.
Process., vol. 1, pp. 1–9, 2014. 

[3] A. Ali, and N. El-Sheimy, “ Low-cost MEMS-based pedestrian
navigation technique for GPS-denied areas,” Journal of Sensors, 10
pages, 2013. 10.1155/2013/197090.

[4] G. Trein, N. Singh, and P. Maddila, “Simple approach for indoor
mapping using low-cost accelerometer and gyroscope sensors,”
DOCPLAYER, 2013. 

[5] H. Bao and W.-Ch. Wong “A Novel Map-Based Dead-Reckoning
Algorithm for Indoor Localization,” Journal of Sensor and Actuator
Network, vol. 3, pp. 44-63, 2014. doi:10.3390 

[6] H. Weinberg, Using the ADXL202 in Pedometer and Personal
Navigation Applications. Analog Devices, Inc.; Norwood, MA, USA:
2002. 

[7] Q. Tian, Z. Salcic, K.I.-K. Wang, and Y. Pan, “A Multi-Mode Dead
Reckoning System for Pedestrian Tracking Using
Smartphones,” IEEE Sens. J., vol. 16, pp. 2079–2093, 2016. doi:
10.1109/JSEN.2015.2510364. 

[8] N.-H. Ho, P. H. Truong, and G.-M. Jeong, “Step-Detection and
Adaptive Step-Length Estimation for Pedestrian Dead-Reckoning at
Various Walking Speeds Using a Smartphone,” Sensors, Basel,
Switzerland, vol. 16(9), pp. 1423, 2016..
http://doi.org/10.3390/s16091423 

[9] S.O.H. Madgwick, An efficient orientation filter for inertial and
inertial/magnetic sensor arrays. 2010.

[10] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Complementary filter
design on the special orthogonal group SO(3),” Proceedings of the
44th IEEE Conference on Decision and Control, and the European
Control Conference 2005 Seville, Spain, December 12-15, 2005. 

[11] S. Mau, “What is the Kalman Filter and How can it be used for Data
Fusion?” Robotics Math, pp. 16-811, December 2005. 

[12] M. Pedley, “Tilt Sensing Using a Three-Axis Accelerometer,”
Freescale Semiconductor, AN3461, 2013.

[13] R. Zhi, A Drift Eliminated Attitude & Position Estimation Algorithm
In 3D. Graduate College Dissertations and Theses, University of
Vermont, 2016.

[14] F. Abyarjoo, A. Barreto, J. Cofino, and F. R. Ortega, “Implementing a 
Sensor Fusion Algorithm for 3D Orientation Detection with
Inertial/Magnetic Sensors.” In: Sobh T., Elleithy K. (eds) Innovations
and Advances in Computing, Informatics, Systems Sciences,
Networking and Engineering. Lecture Notes in Electrical
Engineering, vol 313. Springer, Cham. 2015, pp. 305-310. 

[15] F. Zafari, I. Papapanagiotou, M. Devetsikiotis, and T. Hacker “An
iBeacon based Proximity and Indoor Localization System,”
arXiv:1703.07876v2 [cs.NI] 24 Mar 2017. 

[16] K. Vadivukkarasi, R. Kumar and Mary Joe, “A Real Time Rssi Based
Novel Algorithm to Improve Indoor Localization Accuracy for Target
Tracking in Wireless Sensor Networks,” ARPN Journal of
Engineering and Applied Sciences, vol. 10, no. 16, pp. 7015-7023,
SEPTEMBER 2015. 

[17] T. Qinglin et al. “A Hybrid Indoor Localization and Navigation
System with Map Matching for Pedestrians Using Smartphones.” Ed.
Kourosh Khoshelham and Sisi Zlatanova. Sensors (Basel,
Switzerland) 15.12 (2015): 30759–30783. PMC. Web. 14 Mar. 2018. 

[18] A. Masse, S. Lefèvre, R. Binet, S. Artigues, G. Blanchet, and
S.Baillarin, “Denoising Very High Resolution Optical Remote
Sensing Images: Application and Optimization of Nonlocal Bayes
method,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 11:3, pp. 691-700, 2018. 

[19] T. Singhal, A. Harit, and D. N. Vishwakarma, “Kalman Filter
Implementation on an Accelerometer sensor data for three state
estimation of a dynamic system,” International Journal of Research in
Engineering and Technology (IJRET), vol. 1, no. 6, 2012. ISSN 2277
– 4378 

[20] P. Del Moral, "Non Linear Filtering: Interacting Particle Solution".
Markov Processes and Related Fields. 2 (4) pp. 555–580, 1996. 

[21] B.I. Ahmad, J. Murphy, P.M. Langdon, and S. J. Godsill, "Filtering
perturbed in-vehicle pointing gesture trajectories: Improving the
reliability of intent inference", Machine Learning for Signal
Processing (MLSP) 2014 IEEE International Workshop on, pp. 1-6,
2014. 

[22] D. Gusenbauer, C. Isert, and J. Krosche, “Self-contained indoor
positioning on off-the-shelf mobile devices,” International
Conference on Indoor Positioning and Indoor Navigation (IPIN), pp.
1-9, 2010. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua


