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Abstract—A highly loaded cloud application environment 
requires the highest stability and operability, generates large 
telemetry data streams. These are obvious and actual 
prerequisites to develop a workload shift detector for the 
failures prevention aim. Having studied the previous works, 
the authors developed an approach to the detection of 
changepoints based on the specific conditions of the streaming 
telemetry data. The simulation of data center workload has 
allowed us to generate telemetry data under specific workload, 
thus we can evaluate the performance of the detector under 
various conditions. The conducted experiment has shown the 
viability of the proposed approach as well as directions for 
further study and improvement. 
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I. INTRODUCTION 

Oracle Field Service Cloud (OFSC) is a high-load cloud-
based mobile workforce management application distributed 
as Software-as-a-Service with strict Service License 
Agreement. SLA imposes restrictions to mean time to repair, 
which is the main reason why early detection of abnormal 
behavior is crucial for us.  

OFSC's environment consists of hundreds of servers with 
different roles in several data centers across the world. Most 
common roles are front ends, back ends, databases, 
storages, etc. Servers within the same cluster with a certain 
role have similar operating mode while their belonging to 
different roles almost surely implies working in different 
modes.  

Actually, the cloud architecture is not constant. 
Increasing number of customers results in scaling and 
allocating a larger number of hosts in some clusters. 
Meanwhile, a number of clusters and their role may vary. 
OFSC as application is being continuously changing and 
improving. 

Whereas OFSC is a cloud-based application, Cloud 
Operations department performs continuous service 
monitoring at all the levels of the cloud hierarchy (IaaS, 

PaaS, SaaS), as well as monitoring of client experience for a 
variety of functional tasks of the service. Operations produce 
a significant volume of data: continuous telemetry and 
application logs both “as-is” and aggregated.  

One promising approach to high accessibility and 
reliability in cloud technology is an analysis of this collected 
technical and workload parameters in order to identify novel 
patterns. Once identified, this novel abnormal working 
behavior should be reported to operations teams that 
subsequently perform appropriate procedures. In that 
meaning, abnormal events are events that do not conform to 
expected patterns. Each discrepancy may be considered an 
anomaly.  

Types and specifics of anomalies do not usually repeat, 
considering support system of our application working 
around the clock – they fix and solve emerging incidents. 
Accordingly, almost each time we deal with a novelty 
(anomaly), or unseen before operating mode. Supervised 
learning techniques are not applicable - there is no need in 
the spot-on detection of expected or scheduled situations like 
virtual machine restart, and at the same time unplanned 
situations usually occur only once – each issue results in a set 
of preventive measures.  

The main task of our research is to propose and 
implement an approach to early detection of novelties and 
anomalies in a real-working cloud service based on 
unsupervised learning as a mechanism to watch for shifts in 
regular workload. 

II. REVIEW (RELATED WORKS)
The cloud technologies growth and the necessity of 

remote hardware monitoring on each of the hierarchical 
levels as IaaS, PaaS, SaaS, are producing a huge amount of 
data generated endlessly and in real-time. Processing of such 
data can be carried out in streaming mode (often called 
online processing) or in batch mode, which both have its pros 
and cons [1-5]. 

One of the important issues of data processing in the 
streaming mode is the necessity of high-speed computations, 
especially for machine learning tasks in general and for 
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detecting anomalies in particular, where model training 
requires several passes and it takes considerable time. Taking 
into account the peculiarities of our conditions, in order to 
reduce time delays for learning models in real-time, we focus 
on partially real-time anomaly detection algorithms, which 
have initial non-real-time learning phase[6, 7]. 

Training some models for anomaly detection tasks can be 
performed in supervised, unsupervised, semi-supervised 
modes. Since we cannot afford pre-labeling the data, 
moreover, it makes no sense in constantly changing cloud 
environment, for our approach, we choose an unsupervised 
mode. 

In scientific papers, we considered the widest range of 
models suitable for this mode of machine learning, which 
have specific features for a different type of data stream [8–
10].  

Besides, it should be highlighted, in many cases, the 
behavior of the system can change over time, due to well-
known problem named concept drift. For example, 
reconfiguration and upgrading may influence system 
behavior, so models must adapt to a new definition of 
“normal” in an unsupervised, automatic way [11, 12]. 

Individual anomaly rate computed by individual models 
can be combined in some ensemble technique (e.g., 
averaging or voting) to form a final score. Such approach 
presented in many studies [13-17] 

Thus, after studying related works, the solution of the 
studied problem was carried out in the direction of real-time 
processing of streaming data through formation of an 
ensemble of models based on non-real-time unsupervised 
learning techniques. 

III. METHODOLOGY

This research deals with the data represented as either 
time series from multiple univariate sensors or aggregated 
panel data. The main approach is to split the whole process 
into historic learning part (non-real-time) and real-time 
pipeline. We mine historical data for expected patterns or 
states using historic learning module and right after that, in 
real-time we compare observed mode with the computed 
expected mode.  

A. Data source
Our study is conducted in the field of delivering cloud-

based SaaS application, so we have two main types of time 
series data sources:  

• Analogue signals from multiple sensors assembled as
snapshots – telemetry, or monitoring data, collected at 
regular intervals for IaaS, PaaS and SaaS levels. 

• Discrete signals without consistent spacing, i.e. data
from system and/or application logs. This type of data 
requires performing pre-processing aggregations.  

Those data sources are, in fact, nothing more than infinite 
data streams of large volume and variety that arrive at the 
rapid rate – a typical streaming data with its inherent aspects 
of the concept drift and real-time delivery.  

B. Prehandling data
Monitoring checks have different data acquisition

intervals depending on a check type. At the historic 
processing stage, we apply last observation carried forward 
conversion for these non-uniformly spaced telemetry time 
series, assuming the last observed value to be valid within 
the whole time interval. This approach results in alignment 
of observations on a time grid with step Δτ. Generally, at 
each timestamp in a time grid, τi, every metric can be 
represented as a vector of numeric and factor values:  

Vτi = <TIME; OBJECT; GROUP; METRIC; VALUE; TAGS> 

Furthermore, whereas we have historical data forcibly 
structured by a time grid, it makes sense to apply the same 
spacing to future observations to get equidistant points of 
making decision. 

C. Encemble of models and novelty detector
Our cloud-based service is rapidly changing in response

to changes in customers’ business processes, implementing 
new application features, etc. Concept drift is a common 
phenomenon when data distribution changes over time. Any 
trained model has limited time when it makes accurate 
predictions. Soon enough, a previously trained model cannot 
accurately represent data behavior and requires retraining. 

The best approach to overcome concept drift is to timely 
adjust expectations to a current state of a constantly 
changing system mode. It is important to emphasize that in 
anomaly detection being more adaptive and flexible should 
not mean being less sensitive. 

In order to adapt to changes in concepts and at the same 
time to keep an accurate model, we use an ensemble of 
models to implement novelty detector. With this approach, 
we calculate anomaly rates independently by each model for 
each metric for each observation. Among other things, 
ensemble gives the advantage of uncorrelated errors. 

Since we are only discussing a pilot approach to 
detecting anomalies, our goal is not to select the optimal set 
of detectors or to find the optimal weights for selected 
detectors, but rather to focus on a process of detection under 
certain conditions. We choose several models as inputs to 
the ensemble, listed below and illustrated in Fig.1:  

Fig. 1. Basic principle of the proposed novelty detection ensemble 

1. Forecast-based (Fb) model. It estimates how big the
normalized distance is between the observed data and the 
value predicted by some forecast model in the non-real-time 
module for each metric. For our task, we use SSA (Singular 
spectrum analysis [18]) prediction that is quite accurate for 
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our type of time series. In this model, alert rate rises as soon 
as an observed value significantly deviates from its 
prediction. 

2. Statistic-based (Sb) model supplements forecast-based
model but works independently. The model collects basic 
statistics from known historical modes and works well for 
situations when for some metrics graph of the regular has a 
persistent slope. This model detects trend’s permanent 
growth or recession, which can lead to absolute resource 
consumption. 

3. Distance-based (Db) model takes into account
distance from each observed value xi to every other value in 
a group for a particular metric in a current time slot. It will 
alert when there are no other values besides xi within the 
certain neighborhood. 

D General approach 
During the processing of historical data, all models that 

are part of the ensemble undergo the automatic parameters 
tuning phase. This set of mutable parameters plays a 
significant role in the real-time phase. Each parameter is fed 
in a separate stream and is matched with corresponding 
observation to calculate anomaly rate. Parallel processing 
makes our system highly configurable and, what is 
especially important, fast – there are no complex 
computations in the real-time phase. 

Total anomaly score is calculated in two steps. At first, 
for each metric we aggregate S(x) as a weighted 
combination of Fb rate, Sb rate and Db rate. Afterwards, we 
combine all S(x) into single total anomaly score for the 
whole system as a harmonic mean. Pre-trained set of 
parameters expires over a certain period. In our experiment, 
this period is set to one hour. After expiration, parameters 
undergo new automatic tuning phase. The general simplified 
algorithm is presented in Fig. 2. 

Fig. 2. Simplified algorithm 

IV. EXPERIMENTAL STUDY

This section explains the experimental framework for 
simulating of workload and to approbating proposed novelty 
detection approach. During the experiment, we generated 
several data streams of historic and monitoring. 

A Experimental framework. 
We conducted an experiment within an internal local 

environment that was created specifically for this study. The 
environment consists of several virtual machines (VM) to 
simulate part of data center environment: two front ends 
(VM1 and VM2) that share single balancer node, several 
nodes that produce synthetically generated load, and three 
additional nodes, detailed below, that form an anomaly 
detection cluster assembled with several open source 
technologies.  

Nodes in the anomaly detection cluster are: queue node, 
which handles streaming data; real-time and non-real-time 
modules both run on a compute node; database node serves 
for storing results. Parallelization for real-time and non-real-
time modules has been limited to four threads per node for 
this experiment.  

Queue and database nodes both work in micro batches 
mode, though this is just a matter of configuration from the 
point of view of the expected workload. 

Virtual machines VM1 and VM2 are frontends that 
receive emulated workload with synthetically generated API 
requests. The workload is distributed by working hours to 
produce a realistic data set. Besides, some synthetic tasks run 
in a background to produce small load spikes. 

We have full control over the API emulation process. 
Generated workload profile allows us to generate a response 
stream with a required mode of monitoring data, thus we can 
evaluate the performance of our detector under certain pre-
designed conditions.  

For four days prior to our experiment, we have generated 
a regular profile of disturbing signals to allow history module 
to adjust to “usual” regime when the experiment will begin. 
We have split our experiment into two stages to receive two 
streaming sets of monitoring data. In this way, monitoring 
data generated under specific workload patterns will 
represent different workload conditions.  

The first scenario assumes both VMs workloads are in 
stable mode. Numbers of API requests per each period are 
set according to a regular profile, so all monitoring indicators 
should remain stable. 

The second scenario emulated unstable workload mode is 
more complex. A number of requests to VM1 and VM2 at 
first drops to zero for half an hour and for the next half an 
hour increases in more than two times, if compared to a 
regular load for this time slot. Besides, part of the time after 
17:45 VM2 has been switched off from balancing. This 
resulted in a slightly higher load to VM1, not anomalous, 
though. All changes were instant. A number of requests for 
both scenarios are shown in Fig. 3. Grey area at Stage 2 lies 
within 16:30-17:30 time interval, when we provoke our VMs 
to response with a shift in workload as well as expect our 
system to detect anomalous behavior. 
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Fig. 3. Number of requests per minute 

Fig. 4. Corresponding telemetry data 

Fig. 5. Convolution of anomaly rate 

B Generated data stream. 
In our experiment, we limit a list of possible metrics to 

two telemetry time series, namely CPU load average 
(CPUla) and free memory percentage (FMp). As mentioned 
above, our purpose is not to find the best metrics but rather to 
prove the concept. 

The periodicity of observed values is 5 minutes for 
CPUla and 9 minutes for FMp. For the experiment, we 
downsampled time series to 15 minutes intervals. The 
unsupervised historic module produces three streams 
according to the number of ensemble inputs (Fb, Sb, Db). 
The fourth stream is the stream of the observed real-time 
telemetry (monitoring) data. Merged together in a real-time 
module, all streams form a fast parallel transformation 
pipeline that calculates anomaly score and forms an output 
stream of scores along with some interim calculations. This 
output stream sinks to a database for visualization, further 
analysis and interpretability. 

In such a manner, we obtained data implemented as 4 
data streams with numerous instances. Each time historic 
module processes over 1000 observations to produce forecast 
and statistics for the next 4 points. Snapshots of observed 
system behavior and calculated anomaly rates are shown in 
Fig. 4 and Fig. 5 correspondingly. Grey area on Figure 4 
(Stage 2, both metrics) is a period of time when an expert 
sees some anomalies in CPUla of FMp (16:15-17:30) if 
compared to regular behavior (Stage 1). Grey area on Figure 
5 (16:30-17:45) is a time slot when anomaly is expected to 
be detected. 

C Mannually labeled classes.  
Since we are pursuing to develop a tool for conducting an 

unsupervised anomaly detection, we do not need any 
previously labeled anomalies to implement our detector. 
However, to estimate the accuracy of the proposed detection 
algorithm, two classes of labels were applied: a class label 
False (no anomaly) is given by default, class label True 
(some anomalies) is assigned based on expert opinion as 
described above. It is necessary to emphasize once again that 
these labels are not used in the run-time of our anomaly 
detection algorithm. 

V. RESULTS AND ESTIMATION OF THE APPROACH

For decision-making purposes whether the changes in 
mode denote a novelty, we have chosen the threshold to be 
equal 0.6, which stands for “approximately two-thirds of all 
diagnostics should point out that anomalous rates have been 
detected”. 

It should be noted, our experiment missed the drop in 
CPU load caused by the drop in requests designed to be one 
kind of novelty, but it perfectly revealed unusual behavior 
expressed in the form of increased resource usage (see Fig. 
4).  

F1 score estimated for this experiment is 0.625 (precision 
is 0.833, recall is 0.5). Despite the fact that the estimates are 
not higher than 0.7, the conducted experiment has shown the 
viability of our approach and has highlighted directions for 
further study and improvement. More details on this one can 
find in the next section. 

VI. CONCLUSIONS AND FUTURE WORK

The main contributions of the conducted study are: 
(1) A new modular approach to novelty detection has

been developed based on the main idea of ensemble model 
training with splitting into real-time and non-real-time 
modules  
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(2) Experimental research has been implemented on the
data center simulation framework under different scenarios 
of workload within the proposed method.  

(3) Performance assessment, including precision and
recall, of the proposed approach under experimental 
conditions shows an appropriate performance in both 
indicators. 

Nevertheless, it should be noted that the current study has 
been carried out by a numerical experiment, this causes some 
limitations. In particular, it is advisable to conduct an 
advanced research of some theoretical issues: 

- What kind of machine learning models should be
included in the ensemble detector at the training
stage on historical data to improve a quality of real-
time detection?

- What kind of anomaly score function will give the
best assessment of accuracy and sensitivity for the
proposed approach?

- What length of historical data will be the best?
- Which frequency is optimal for retraining the models

(once a day, every 3 hours or even dynamically
chosen interval, instead of a predefined interval)?

Besides, the proposed approach, suitable for the 
streaming data anomaly detection, has been successfully 
validated but has not been compared with any of the existing 
methods. A comprehensive study of performance of the 
proposed approach versus other methods would be a good 
next step in this research. 
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