
IEEE Second International Conference on Data Stream Mining & Processing
August 21-25, 2018, Lviv, Ukraine

978-1-5386-2874-4/18/$31.00 ©2018 IEEE 166

Unsupervised Real-Time Stream-Based
Novelty Detection Technique

An Approach in a Corporate Cloud

Anna Vergeles
Cloud Operations

Oracle
Kharkiv, Ukraine

anna.vergeles@oracle.com

Dmytro Prokopenko
Cloud Operations

Oracle
Kharkiv, Ukraine

dmytro.p.prokopenko@oracle.com

Alexander Khaya
Cloud Operations

Oracle
Kharkiv, Ukraine

alexander.khaya@oracle.com

Nataliia Manakova
Cloud Operations

Oracle
Kharkiv, Ukraine

nataliia.manakova@oracle.com

Abstract—A highly loaded cloud application environment
requires the highest stability and operability, generates large
telemetry data streams. These are obvious and actual
prerequisites to develop a workload shift detector for the
failures prevention aim. Having studied the previous works,
the authors developed an approach to the detection of
changepoints based on the specific conditions of the streaming
telemetry data. The simulation of data center workload has
allowed us to generate telemetry data under specific workload,
thus we can evaluate the performance of the detector under
various conditions. The conducted experiment has shown the
viability of the proposed approach as well as directions for
further study and improvement.

Keywords — high-load, cloud, SaaS, telemetry, sensors, logs,
real-time, monitoring, streaming data, changepoint, novelty,
anomaly detection, unsupervised

I. INTRODUCTION

Oracle Field Service Cloud (OFSC) is a high-load cloud-
based mobile workforce management application distributed
as Software-as-a-Service with strict Service License
Agreement. SLA imposes restrictions to mean time to repair,
which is the main reason why early detection of abnormal
behavior is crucial for us.

OFSC's environment consists of hundreds of servers with
different roles in several data centers across the world. Most
common roles are front ends, back ends, databases,
storages, etc. Servers within the same cluster with a certain
role have similar operating mode while their belonging to
different roles almost surely implies working in different
modes.

Actually, the cloud architecture is not constant.
Increasing number of customers results in scaling and
allocating a larger number of hosts in some clusters.
Meanwhile, a number of clusters and their role may vary.
OFSC as application is being continuously changing and
improving.

Whereas OFSC is a cloud-based application, Cloud
Operations department performs continuous service
monitoring at all the levels of the cloud hierarchy (IaaS,

PaaS, SaaS), as well as monitoring of client experience for a
variety of functional tasks of the service. Operations produce
a significant volume of data: continuous telemetry and
application logs both “as-is” and aggregated.

One promising approach to high accessibility and
reliability in cloud technology is an analysis of this collected
technical and workload parameters in order to identify novel
patterns. Once identified, this novel abnormal working
behavior should be reported to operations teams that
subsequently perform appropriate procedures. In that
meaning, abnormal events are events that do not conform to
expected patterns. Each discrepancy may be considered an
anomaly.

Types and specifics of anomalies do not usually repeat,
considering support system of our application working
around the clock – they fix and solve emerging incidents.
Accordingly, almost each time we deal with a novelty
(anomaly), or unseen before operating mode. Supervised
learning techniques are not applicable - there is no need in
the spot-on detection of expected or scheduled situations like
virtual machine restart, and at the same time unplanned
situations usually occur only once – each issue results in a set
of preventive measures.

The main task of our research is to propose and
implement an approach to early detection of novelties and
anomalies in a real-working cloud service based on
unsupervised learning as a mechanism to watch for shifts in
regular workload.

II. REVIEW (RELATED WORKS)
The cloud technologies growth and the necessity of

remote hardware monitoring on each of the hierarchical
levels as IaaS, PaaS, SaaS, are producing a huge amount of
data generated endlessly and in real-time. Processing of such
data can be carried out in streaming mode (often called
online processing) or in batch mode, which both have its pros
and cons [1-5].

One of the important issues of data processing in the
streaming mode is the necessity of high-speed computations,
especially for machine learning tasks in general and for

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

167

detecting anomalies in particular, where model training
requires several passes and it takes considerable time. Taking
into account the peculiarities of our conditions, in order to
reduce time delays for learning models in real-time, we focus
on partially real-time anomaly detection algorithms, which
have initial non-real-time learning phase[6, 7].

Training some models for anomaly detection tasks can be
performed in supervised, unsupervised, semi-supervised
modes. Since we cannot afford pre-labeling the data,
moreover, it makes no sense in constantly changing cloud
environment, for our approach, we choose an unsupervised
mode.

In scientific papers, we considered the widest range of
models suitable for this mode of machine learning, which
have specific features for a different type of data stream [8–
10].

Besides, it should be highlighted, in many cases, the
behavior of the system can change over time, due to well-
known problem named concept drift. For example,
reconfiguration and upgrading may influence system
behavior, so models must adapt to a new definition of
“normal” in an unsupervised, automatic way [11, 12].

Individual anomaly rate computed by individual models
can be combined in some ensemble technique (e.g.,
averaging or voting) to form a final score. Such approach
presented in many studies [13-17]

Thus, after studying related works, the solution of the
studied problem was carried out in the direction of real-time
processing of streaming data through formation of an
ensemble of models based on non-real-time unsupervised
learning techniques.

III. METHODOLOGY

This research deals with the data represented as either
time series from multiple univariate sensors or aggregated
panel data. The main approach is to split the whole process
into historic learning part (non-real-time) and real-time
pipeline. We mine historical data for expected patterns or
states using historic learning module and right after that, in
real-time we compare observed mode with the computed
expected mode.

A. Data source
Our study is conducted in the field of delivering cloud-

based SaaS application, so we have two main types of time
series data sources:

• Analogue signals from multiple sensors assembled as
snapshots – telemetry, or monitoring data, collected at
regular intervals for IaaS, PaaS and SaaS levels.

• Discrete signals without consistent spacing, i.e. data
from system and/or application logs. This type of data
requires performing pre-processing aggregations.

Those data sources are, in fact, nothing more than infinite
data streams of large volume and variety that arrive at the
rapid rate – a typical streaming data with its inherent aspects
of the concept drift and real-time delivery.

B. Prehandling data
Monitoring checks have different data acquisition

intervals depending on a check type. At the historic
processing stage, we apply last observation carried forward
conversion for these non-uniformly spaced telemetry time
series, assuming the last observed value to be valid within
the whole time interval. This approach results in alignment
of observations on a time grid with step Δτ. Generally, at
each timestamp in a time grid, τi, every metric can be
represented as a vector of numeric and factor values:

Vτi = <TIME; OBJECT; GROUP; METRIC; VALUE; TAGS>

Furthermore, whereas we have historical data forcibly
structured by a time grid, it makes sense to apply the same
spacing to future observations to get equidistant points of
making decision.

C. Encemble of models and novelty detector
Our cloud-based service is rapidly changing in response

to changes in customers’ business processes, implementing
new application features, etc. Concept drift is a common
phenomenon when data distribution changes over time. Any
trained model has limited time when it makes accurate
predictions. Soon enough, a previously trained model cannot
accurately represent data behavior and requires retraining.

The best approach to overcome concept drift is to timely
adjust expectations to a current state of a constantly
changing system mode. It is important to emphasize that in
anomaly detection being more adaptive and flexible should
not mean being less sensitive.

In order to adapt to changes in concepts and at the same
time to keep an accurate model, we use an ensemble of
models to implement novelty detector. With this approach,
we calculate anomaly rates independently by each model for
each metric for each observation. Among other things,
ensemble gives the advantage of uncorrelated errors.

Since we are only discussing a pilot approach to
detecting anomalies, our goal is not to select the optimal set
of detectors or to find the optimal weights for selected
detectors, but rather to focus on a process of detection under
certain conditions. We choose several models as inputs to
the ensemble, listed below and illustrated in Fig.1:

Fig. 1. Basic principle of the proposed novelty detection ensemble

1. Forecast-based (Fb) model. It estimates how big the
normalized distance is between the observed data and the
value predicted by some forecast model in the non-real-time
module for each metric. For our task, we use SSA (Singular
spectrum analysis [18]) prediction that is quite accurate for

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

168

our type of time series. In this model, alert rate rises as soon
as an observed value significantly deviates from its
prediction.

2. Statistic-based (Sb) model supplements forecast-based
model but works independently. The model collects basic
statistics from known historical modes and works well for
situations when for some metrics graph of the regular has a
persistent slope. This model detects trend’s permanent
growth or recession, which can lead to absolute resource
consumption.

3. Distance-based (Db) model takes into account
distance from each observed value xi to every other value in
a group for a particular metric in a current time slot. It will
alert when there are no other values besides xi within the
certain neighborhood.

D General approach
During the processing of historical data, all models that

are part of the ensemble undergo the automatic parameters
tuning phase. This set of mutable parameters plays a
significant role in the real-time phase. Each parameter is fed
in a separate stream and is matched with corresponding
observation to calculate anomaly rate. Parallel processing
makes our system highly configurable and, what is
especially important, fast – there are no complex
computations in the real-time phase.

Total anomaly score is calculated in two steps. At first,
for each metric we aggregate S(x) as a weighted
combination of Fb rate, Sb rate and Db rate. Afterwards, we
combine all S(x) into single total anomaly score for the
whole system as a harmonic mean. Pre-trained set of
parameters expires over a certain period. In our experiment,
this period is set to one hour. After expiration, parameters
undergo new automatic tuning phase. The general simplified
algorithm is presented in Fig. 2.

Fig. 2. Simplified algorithm

IV. EXPERIMENTAL STUDY

This section explains the experimental framework for
simulating of workload and to approbating proposed novelty
detection approach. During the experiment, we generated
several data streams of historic and monitoring.

A Experimental framework.
We conducted an experiment within an internal local

environment that was created specifically for this study. The
environment consists of several virtual machines (VM) to
simulate part of data center environment: two front ends
(VM1 and VM2) that share single balancer node, several
nodes that produce synthetically generated load, and three
additional nodes, detailed below, that form an anomaly
detection cluster assembled with several open source
technologies.

Nodes in the anomaly detection cluster are: queue node,
which handles streaming data; real-time and non-real-time
modules both run on a compute node; database node serves
for storing results. Parallelization for real-time and non-real-
time modules has been limited to four threads per node for
this experiment.

Queue and database nodes both work in micro batches
mode, though this is just a matter of configuration from the
point of view of the expected workload.

Virtual machines VM1 and VM2 are frontends that
receive emulated workload with synthetically generated API
requests. The workload is distributed by working hours to
produce a realistic data set. Besides, some synthetic tasks run
in a background to produce small load spikes.

We have full control over the API emulation process.
Generated workload profile allows us to generate a response
stream with a required mode of monitoring data, thus we can
evaluate the performance of our detector under certain pre-
designed conditions.

For four days prior to our experiment, we have generated
a regular profile of disturbing signals to allow history module
to adjust to “usual” regime when the experiment will begin.
We have split our experiment into two stages to receive two
streaming sets of monitoring data. In this way, monitoring
data generated under specific workload patterns will
represent different workload conditions.

The first scenario assumes both VMs workloads are in
stable mode. Numbers of API requests per each period are
set according to a regular profile, so all monitoring indicators
should remain stable.

The second scenario emulated unstable workload mode is
more complex. A number of requests to VM1 and VM2 at
first drops to zero for half an hour and for the next half an
hour increases in more than two times, if compared to a
regular load for this time slot. Besides, part of the time after
17:45 VM2 has been switched off from balancing. This
resulted in a slightly higher load to VM1, not anomalous,
though. All changes were instant. A number of requests for
both scenarios are shown in Fig. 3. Grey area at Stage 2 lies
within 16:30-17:30 time interval, when we provoke our VMs
to response with a shift in workload as well as expect our
system to detect anomalous behavior.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

169

Fig. 3. Number of requests per minute

Fig. 4. Corresponding telemetry data

Fig. 5. Convolution of anomaly rate

B Generated data stream.
In our experiment, we limit a list of possible metrics to

two telemetry time series, namely CPU load average
(CPUla) and free memory percentage (FMp). As mentioned
above, our purpose is not to find the best metrics but rather to
prove the concept.

The periodicity of observed values is 5 minutes for
CPUla and 9 minutes for FMp. For the experiment, we
downsampled time series to 15 minutes intervals. The
unsupervised historic module produces three streams
according to the number of ensemble inputs (Fb, Sb, Db).
The fourth stream is the stream of the observed real-time
telemetry (monitoring) data. Merged together in a real-time
module, all streams form a fast parallel transformation
pipeline that calculates anomaly score and forms an output
stream of scores along with some interim calculations. This
output stream sinks to a database for visualization, further
analysis and interpretability.

In such a manner, we obtained data implemented as 4
data streams with numerous instances. Each time historic
module processes over 1000 observations to produce forecast
and statistics for the next 4 points. Snapshots of observed
system behavior and calculated anomaly rates are shown in
Fig. 4 and Fig. 5 correspondingly. Grey area on Figure 4
(Stage 2, both metrics) is a period of time when an expert
sees some anomalies in CPUla of FMp (16:15-17:30) if
compared to regular behavior (Stage 1). Grey area on Figure
5 (16:30-17:45) is a time slot when anomaly is expected to
be detected.

C Mannually labeled classes.
Since we are pursuing to develop a tool for conducting an

unsupervised anomaly detection, we do not need any
previously labeled anomalies to implement our detector.
However, to estimate the accuracy of the proposed detection
algorithm, two classes of labels were applied: a class label
False (no anomaly) is given by default, class label True
(some anomalies) is assigned based on expert opinion as
described above. It is necessary to emphasize once again that
these labels are not used in the run-time of our anomaly
detection algorithm.

V. RESULTS AND ESTIMATION OF THE APPROACH

For decision-making purposes whether the changes in
mode denote a novelty, we have chosen the threshold to be
equal 0.6, which stands for “approximately two-thirds of all
diagnostics should point out that anomalous rates have been
detected”.

It should be noted, our experiment missed the drop in
CPU load caused by the drop in requests designed to be one
kind of novelty, but it perfectly revealed unusual behavior
expressed in the form of increased resource usage (see Fig.
4).

F1 score estimated for this experiment is 0.625 (precision
is 0.833, recall is 0.5). Despite the fact that the estimates are
not higher than 0.7, the conducted experiment has shown the
viability of our approach and has highlighted directions for
further study and improvement. More details on this one can
find in the next section.

VI. CONCLUSIONS AND FUTURE WORK

The main contributions of the conducted study are:
(1) A new modular approach to novelty detection has

been developed based on the main idea of ensemble model
training with splitting into real-time and non-real-time
modules

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

170

(2) Experimental research has been implemented on the
data center simulation framework under different scenarios
of workload within the proposed method.

(3) Performance assessment, including precision and
recall, of the proposed approach under experimental
conditions shows an appropriate performance in both
indicators.

Nevertheless, it should be noted that the current study has
been carried out by a numerical experiment, this causes some
limitations. In particular, it is advisable to conduct an
advanced research of some theoretical issues:

- What kind of machine learning models should be
included in the ensemble detector at the training
stage on historical data to improve a quality of real-
time detection?

- What kind of anomaly score function will give the
best assessment of accuracy and sensitivity for the
proposed approach?

- What length of historical data will be the best?
- Which frequency is optimal for retraining the models

(once a day, every 3 hours or even dynamically
chosen interval, instead of a predefined interval)?

Besides, the proposed approach, suitable for the
streaming data anomaly detection, has been successfully
validated but has not been compared with any of the existing
methods. A comprehensive study of performance of the
proposed approach versus other methods would be a good
next step in this research.

ACKNOWLEDGMENT
We thank Oracle Corporation for supporting this research

project and especially Maryna Chukhray and Andriy
Rabochiy for their discussions, feedback and helpful
suggestions.

Safe Harbor Statement. The following is intended for
information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and
timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

REFERENCES
[1] M. Dias de Assunção, A. da Silva Veith, and R. Buyya, “Distributed

data stream processing and edge computing: A survey on resource
elasticity and future directions,” Journal of Network and Computer
Applications, vol. 103, pp. 1–17, 2018.

[2] M. Harvan, T. Locher, and A. C. Sima, “Cyclone: Unified Stream and
Batch Processing,” in 2016 45th International Conference on Parallel
Processing Workshops (ICPPW), Philadelphia, PA, USA, pp. 220–
229, 2016.

[3] W. Li, D. Niu, Y. Liu, S. Liu, and B. Li, “Wide-Area Spark
Streaming: Automated Routing and Batch Sizing,” IEEE International
Conference on Autonomic Computing (ICAC), Columbus, OH, USA,
pp. 33–38, 2017.

[4] K. Vidyasankar, “On Atomic Batch Executions in Stream
Processing,” Procedia Computer Science, vol. 98, pp. 72–79, 2016.

[5] C. Klein, B. Donnellan, and M. Helfert, Eds., Correlation-Model-
Based Reduction of Monitoring Data in Data Centers, Setúbal:
SCITEPRESS - Science and Technology Publications Lda, 2016.

[6] P.-Y. Chen, S. Yang, and J. A. McCann, “Distributed Real-Time
Anomaly Detection in Networked Industrial Sensing Systems,” IEEE
Trans. Ind. Electron., vol. 62, no. 6, pp. 3832–3842, 2015.

[7] S. Y. Shin and J. C. Maldonado, Novelty detection algorithm for data
streams multi-class problems. Coimbra, Portugal, ACM, March 18-
22, 2013.

[8] D. Hong, D. Zhao, and Y. Zhang, “The Entropy and PCA Based
Anomaly Prediction in Data Streams,” Procedia Computer Science,
vol. 96, pp. 139–146, 2016.

[9] C. C. Olson, K. P. Judd, and J. M. Nichols, “Manifold learning
techniques for unsupervised anomaly detection,” Expert Systems with
Applications, vol. 91, pp. 374–385, 2018.

[10] Sajjad Kamali Siahroudi, Poorya Zare Moodi, and Hamid Beigy,
“Detection of evolving concepts in non-stationary data streams: A
multiple kernel learning approach,” Expert Systems With
Applications, pp. 187-197, 2018.

[11] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134–147, 2017.

[12] M. Tennant, F. Stahl, O. Rana, and J. B. Gomes, “Scalable real-time
classification of data streams with concept drift,” Future Generation
Computer Systems, vol. 75, pp. 187–199, 2017.

[13] E. Yu and P. Parekh, “A Bayesian Ensemble for Unsupervised
Anomaly Detection,” [Online] Available:
http://arxiv.org/pdf/1610.07677v1.

[14] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M.
Woźniak, “Ensemble learning for data stream analysis: A survey,”
Information Fusion, vol. 37, pp. 132–156, 2017.

[15] Z. Ding and M. Fei, “An Anomaly Detection Approach Based on
Isolation Forest Algorithm for Streaming Data using Sliding
Window,” IFAC Proceedings Volumes, vol. 46, no. 20, pp. 12–17,
2013.

[16] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, “New
ensemble methods for evolving data streams,” 15th ACM SIGKDD
international conference on Knowledge discovery and data mining -
KDD '09, Paris, France, p. 139, 2009.

[17] K. Noto, C. Brodley, and D. Slonim, “Anomaly Detection Using an
Ensemble of Feature Models,” (eng), IEEE International Conference
on Data Mining, pp. 953–958, 2010.

[18] N. Golyandina and A. Korobeynikov, “Basic Singular Spectrum
Analysis and forecasting with R,” Computational Statistics & Data
Analysis, vol. 71, pp. 934–954, 2014.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

