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Abstract— The paper introduces concept of a modified 
kernel of the Boolean functions. Applying such a concept, the 
criteria for the implementation of the Boolean functions by one 
generalized neural element are obtained. The effective and 
necessary conditions to check whether the algebra of logic 
functions belong to the class of the generalized neural functions 
are given. A sufficient condition for the implementation of the 
Boolean functions is obtained by one generalized neural 
element on the basis of which it is possible to develop effective 
methods for the synthesis of the generalized integer neural 
elements with a large number of inputs. 
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I. INTRODUCTION 

In recent years, there has been an increased interest in 
neural-like structures, which are widely used in image 
recognition, compression of discrete signals and images, 
forecasting, business, medicine and engineering. 

Widespread usage of neural networks to effectively solve 
applied problems will become possible if effective methods 
of synthesis (training) of neural elements with different 
functions of activation and synthesis of logical circuits of 
them are developed. 

It is required to synthesize reliable (integer) neural 
elements with a large number of inputs concerning such 
issues as image recognition, compression and transmission of 
discrete signals. Classical methods of approximation and 
various iterative methods for the synthesis of neural elements 
are almost not suitable for finding the vectors of neural 
element structures to implement discrete functions with a 
large number of inputs (several hundreds, thousands).  

Artificial neural networks and neural-like structures are 
effectively used for the classification and recognition of 
images [1] and for improving their quality [2]. Intelligent 
blocks of various systems for controlling chemical processes 
[3], for prediction of economic [4], biological [5] processes 
are developed on their basis. Neural network methods have 
been successfully applied to compress signals and images [6-
9], in the banking sector to assess credit risk [9,11], in 
automated control systems of technological processes [12], 
in the field of intellectual data processing [13] and for 

constructing  the logical blocks of various safety 
systems  [14]. 

When selecting mathematical models of neural elements 
for the construction of neural-like structures, the 
functionality of these elements is of importance. It is crucial 
for optimizing the number of elements in the corresponding 
logical structures. The generalized neural elements allowing 
to extend the functionality of ordinary neural elements with 
threshold activation functions are considered. The properties 
of the kernels of functions of the algebra of logic that are 
implemented on these elements are discovered. 

II. THE KERNEL PROPERTIES OF THE GENERALIZED NEURAL 
FUNCTIONS 

Let 2 = { 1,1}H −  – a cyclic group of the 2nd order, 

2 2=nG H H⊗ ⊗  – a direct product n  of the cyclic groups 

2H  і ( )nGχ  – a group of characters [15] of the group nG
over the field of R . Define on the set \{0}R  a function as 
follows:  

1, > 0,
Rsign =

1, < 0.
if x

x
if x


−

(1)

Let { }2 0,1Z = , {0,1, 2, , 2 1}ni ∈ −  and 1( , , )ni i  – 

binary code of i , i.e. 1 2
1 2= 2 2 , {0,1}n n

n ji i i i i− −+ + + ∈ . 
The value of the character iχ  on the element 

1= (( 1) , , ( 1) )n
nGαα− − ∈g  1 2(( , , ) n

n Zα α ∈  – n-fold 

Cartesian product { })2Z 0,1=  is determined as follows:  

11 2 2( ) = ( 1) .i i in n
i

α α αχ + + +−g
 (2)

Considering the orthogonality of the characters [15] the 
group of characters ( )nX G  forms an orthogonal basis of the 
space = { | : }R nV G Rφ φ → . Since the Boolean function of 
n variables in { 1,1}−  sets unambiguous mapping of the 
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form 2: nf G H→ , то Rf V∈  and it means that an arbitrary 
Boolean function f  can be written unambiguously:  

0 0 1 1 2 1 2 1
( ) = ( ) ( ) ( ).n nf s s sχ χ χ

− −
+ + +g g g g  (3)

A vector 0 1 2 1
= ( , , , )f ns s s

−
s   is called the spectrum of 

the Boolean function f  in the system of characters ( )nGχ
(in the system of Walsh-Hadamard basic functions [16]). 

With different characters ( )nGχ , in addition to the main
one, make up m -element set 

1
{ , , }i im

χ χ χ=   and 
concerning the chosen system of characters, according 
to[17], consider the mathematical model of a neural element 
with a generalized threshold activation function (of a 
generalized neural element):  

1 0
=1

( ( ), , ( )) = Rsign( ( ) ),
m

n j i j
j

f x x ω χ ω+g g g     (4)

where 1 0= ( , , ; )mω ω ωw   is called a vector of the 
structure of the generalized neural element (GNE) regarding 
the system of characters ( )nGχ χ∈  і nG∈g .  

Let 1 01
w( ) = ( ) ( )i m im

ω χ ω χ ω+ + +g g g . If 

1 0= ( , , ; )mω ω ωw   is a vector of the GNE structure 
regarding the system of characters 

1
{ , }i im

χ χ χ=   of the 

group ( )nGχ , that realizes the Boolean function

2: nf G H→ , from (1) and (4) we have the following result: 

w( ) 0.nG∀ ∈ ≠g g  (5)

Further we only consider such neural elements whose 
vectors of structure satisfy the condition (5). A set of all such 

1m + -dimensional real vectors satisfying the condition (5) 
regarding the system χ  we will denote 
as 1 1 1

W ( ) = W ( , ).m m i im
χ χ χ+ +   

Definition 1. The Boolean function 2: nf G H→  is 
called a generalized neural function concerning the system of 
characters 

1
{ , , } ( )i i nm

Gχ χ χ χ= ⊂  if 

1 0 1= ( , , ; ) W ( )m mω ω ω χ+∈w  that is applied to as an
equation (4) 

To introduce the concept of kernels of the generalized 
neural functions and to study their basic properties, the 
Boolean functions will be considered as in { }2 1,1H = − , as 

in { }2Z 0,1= . Let ( )1, , nf x x  the Boolean function in 
{ 1,1}− , i.e. 2: nf G H→ . We will consider the problem on 
the implementation of the Boolean function ( )1, , nf x x  by 
one GNE regarding the system of characters 

{ }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂  in {0,1} . Using the 

transformation 1' = ( 1)
2

+x x  we define the mapping of the 

form { 1,1} {0,1}− → and build the system 

( ) ( ) ( )1 1 2 2

1 1 1= = 1 , = 1 , , = 1
2 2 2i i i i i im m

χ χ χ χ χ χ χ ′ ′ ′ ′+ + + 
 

  

Let { }1 ( 1) = | ( ) = 1nf G f− − ∈ −g g  and 

{ }1 (1) = | ( ) = 1nf G f− ∈g g . Using the system χ′  we will 
determine:  

( ){ }1

1
1( 1)

(0) = ( ), , ( ) ,i im
f

fχ χ χ−

−∈ −

′ ′
g

g g

( ){ }1

1
1(1)

(1) = ( ), , ( ) .i im
f

fχ χ χ−

−∈

′ ′
g

g g

Definition 2. The kernel of the Boolean function 
2: nf G H→  regarding the system of characters 

{ }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂  in {0,1}  is called a set

( ),K fχ which is determined as follows:

1 1 1

1 1 1

(1), (1) (0) ,
( ) =

(0), (1) > (0) ,

f if f f
K f

f if f f

χ χ χ
χ

χ χ χ

− − −

− − −

 ≤



if 1 1(1) (0) =f fχ χ
− −∩ ∅ , where 1( )f iχ

−  – a number of set

elements 1( ) ( {0,1})f i iχ
− ∈ . 

If 1 1(1) (0) =f fχ χ
− − /∩ ∅ , the kernel ( )K fχ  does not exist 

and it means that a function f  is not realized by one GNE 
regarding the sytem χ . 

Let 2
mZ − mth Cartesian degree of the set { }2Z 0,1= . 

Assume, that the function 2: nf G H→  has the kernel 
( )K fχ  regarding the system 

1
{ , , }i im

χ χ χ=  , i.e. 
1 1(1) (0) =f fχ χ

− −∩ ∅ . The sets 1 (1)fχ
− , 1 (0)fχ

− satisfy one
of the conditions: 

1) 1 1
2 (1) (0)mZ f fχ χ

− −= ∪ – a function fχ  completely

defined on the set 2
mZ ;  

2) 1 1
2 (1) (0)mZ f fχ χ

− −≠ ∪ – a function fχ  partially defined

on the set 2
mZ . 

In the first case, the kernel ( )K fχ is defined
unambiguously and ( , ) ( )K f K fχ χ∅ = . 

In the second case, we introduce the concept of the 
generalized kernel concerning the system of characters χ  . 

 Let 1( ) = { , , }qK fχ a a  – a kernel of the Boolean 
function fχ  regarding the system 

1
{ , , }i im

χ χ χ=   and 
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1(*)fχ
− is a set of those combinations with 2Zm  on which the 

function is not defined, then under the extended kernel 
function fχ  regarding the system χ  we imply 

1 1( , ) = { , , , , , }q q q sK f Aχ + +a a a a  , where 1, ,q q s+ +a a – 

various arbitrary elements of the set from 1(*)fχ
− ,

12mq s −+ ≤  and { }1, , .q q sA + += a a  Note, that a set A  may 
be empty. 

We introduce a concept of the modified kernel ( , )K f Mχ  
of the Boolean function 2: nf G H→  concerning the system 

of characters { }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂ as follows:

( ) , ;
( , )

( , ) , .
K f if A

K f M
K f A if A

χ
χ

χ

= ∅
=  ≠ ∅

Definition 3. The Boolean function 2: nf G H→  is 
realized by one generalized neural element with the structure 
vector 1 0= ( , , ; )mω ω ωw   over R concerning the system of 

characters { }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂  in { }0,1 , if there

exists such a modified kernel ( , )K f Mχ . Let 2: nf G H→ , 

the system { }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂  and the modified

kernel ( , )K f Mχ . We will make for a function f
concerning the system χ  and the modified kernel

( , )K f Mχ  the Boolean function *
2 2: Zmf Zχ →  as follows:  

*( , ) ( ) ( )K f M f fχ χ χ∀ ∈ =a a a  , 

*
2 \ ( , ) ( ) ( ),mZ K f M f fχ χ χ∀ ∈ =a a a   

where the vinculum means a logical denial operation. 

By definition, function *fχ and ( ) ( , )K f K f Mχ χ⊂  we 
obtain

1 * 1( ) ( )f fχ χα α− −⊂ ,

where { }0,1α ∈ .

We define the kernel of function *fχ as a modified kernel
of function fχ , i.e.

*( ) ( , ).K f K f Mχ χ=  

We will determine a convex linear hull *conv ( )K fχ of

the kernel elements *( )K fχ  as follows:

}

*

1 1

*
1 1

conv ( ) [0,1] , 1,

0,..., 0; ,..., ( ) .

t t
m

i i i
i i

t t

K f

K f

χ

χ

λ λ

λ λ
= =

= ∈ = =


≥ ≥ ∈

 x x a

a a

Similarly, we define * *conv ( )K fχ for
* * *

2( ) Z \ ( ).mK f K fχ χ=  

Theorem 1. The Boolean function 2: nf G H→
( f const≠ ) is realized by one generalized neural element 
regarding the system of characters 

{ }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂  only when there exists such

a modified kernel ( , )K f Mχ , that

* * *conv ( ) conv ( ) =K f K fχ χ∩ ∅ . 

Let ,a b  – arbitrary kernel elements ( )K fχ ( = )/a b  of
the Boolean function 2: nf G H→  regarding the system of 

characters { }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂  і ( , )O a b  – a set

of such ortho-vectors 
1
, ,i is

e e , that 

1 2
= i i is

⊕ + + +a b e e e , where ⊕  – a coordinate-wise sum 

of vectors by module 2 , =r ki i/ , if =r k/ . Denote ( , )H a b

to be the subset of the group 2
mZ  ( 2

mZ forms a group 
regarding the operation ⊕ ), which is generated by the 
elements ( , )O a b , i.e.  

1 1
H( , ) = , , | , , ( , )i i i is s

O∈a b e e e e a b  . 

Let 1 1 2= ( , , ), = ( , , ) m
m m Zα α β β ∈a b  . A coordinate-

wise conjunction of vectors a  and b  we will define as 
1 1& = ( & , , & )m mα β α βa b   as well as ( & )H a b  we will 

define an adjacent group class 2
mZ  by the subset ( , )H a b , 

that is defined by the element &a b , i.e. 
( & ) = & ( , )H H⊕a b a b a b . 

Set the metric ( , )ρ a b on 2
mZ  as follows: 

=1
( , ) = ( ),

m

i i
i

ρ α β⊕a b

where 1 1 2= ( , , ), = ( , , ) m
m m Zα α β β ∈a b   . 

Theorem 2. If the Boolean function 2: nf G H→
( f const≠ ) is realized by one generalized neural element 
regarding the system of characters 

{ }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂  with the modified kernel

( , )K f Mχ , for any two different elements ,a b  with *( )K fχ ,

for which * *| ( & ) ( ) | 2H K fχ∩ ≥a b  and for any two

different elements ,g h  with * *( & ) ( )H K fχ∩a b , inequality 
is realized ( , ) < ( , )ρ ρg h a b . 
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Let { }*
1( ) ,..., tK fχ = a a  – a kernel of the Boolean 

function 2: nf G H→  ( f const≠ ) regarding the system of 

characters { }1 2
= , , , ( )i i i nm

X Gχ χ χ χ ⊂  with the modified

kernel ( , )K f Mχ  and { }*
1( ) ,...,i i i tK fχ = ⊕ ⊕a a a a  – the 

consolidated kernel [18] of function *fχ concerning the
element *( )i K fχ∈a . A set of all consolidated kernels of the 

Boolean function *fχ  we will defined as 

{ }* * *( ) ( ) ( ) 1,2,...,i iT f K f K f i tχ χ χ= = =a .

It is believed that the vector 1 2( ,..., ) m
m Zα α= ∈a

precedes the vector 1 2( ,..., ) m
m Zβ β= ∈b a b , if 

( 1,2,..., )i i i mα β≤ = . We will denote Na to be a set of all 
such vectors with 2

mZ , which precedes the vector a . 

Theorem 3. If the Boolean function 2: nf G H→  is 
realized by one generalized neural element regarding the 
system of characters { }1 2

= , , , ( )i i i nm
X Gχ χ χ χ ⊂  with

the modified kernel ( , )K f Mχ , the kernel *( )K fχ of function
*fχ  satisfies the condition

* *
11= ( , , ) ( ) = ( , , ) ( )mm K f K fχ χα α α α∈  ∈/a a  ,  

where iα  – an inverted value iα . 

Theorem 4. If the Boolean function 2: nf G H→  is 
realized by one generalized neural element regarding the 
system of characters in { }1 2

= , , , ( )i i i nm
X Gχ χ χ χ ⊂  with

the modified kernel ( , )K f Mχ , a set of the consolidated

kernel *T(f )χ contains the element *( )iK fχ , that 

* *( ) ( )i iK f N K fχ χ∀ ∈  ⊂aa  . 

Consider a set of matrices of tolerance [17] 

1 11 1
1 1 2 **

1 11 1

00
= (0 ), = , ..., =

00
m m

m m
m m

LL
F L L L

LL
− −

− −

    =    
     

,  

where 0r  – zero column of 12 1r − × .  

Using the kernel elements *( )K fχ we will construct the

matrix *( )K fξ χ  as follows: the first line of the matrix 
*( )K fξ χ  will be ( )(1) (1)1 (1),..., mξ ξ ξα α=a  out of ( )K fχ , the

second line of the matrix will be ( )(2) (2)1 (2),..., mξ ξ ξα α=a , 

the last line *( )K fξ χ  will be ( )( ) ( )1 ( ),...,q q q mξ ξ ξα α=a , where 
( )iξ  – an effect of substitution qSξ ∈  for i  ( a symmetric

group of degree q) . Let , then  (a symmetric group of degree 
m).  

Theorem 5. If a set of the consolidated kernels )( *
χfT

of the Boolean function 2: HGf n → ( constf ≠ ) 
regarding the system of characters nmii G⊂},,{=

1
χχχ 

with the modified kernel ),( MfK χ  contains the element 

ifK )( *
χ  for which there exist the elements tS∈ξ  , mS∈σ

and such a matrix of tolerance mj FL
i
∈  , that

  

 )0...0)((...

...)0...0)(())0...0)(()0...0()(

*

1
1

*
10

**

rjm

i
rrj

jm

i
j

jm

i
j

jm
ji

i
i

i
i

i
i

i
i

qL

qLqLLfK

−−
+

−−
+

−−

∇

∇∇∇=χ
σ
ξ

where i
r

ii qqq ≥≥≥ ...10 , then the function 2: HGf n →
isrealized by one generalized neural element regarding the 
system of characters χ . Based on the above mentioned 
theorems, an effective algorithm for synthesizing optimal 
generalized integer neural elements with a large number of 
inputs can be constructed. 

III. THE EXAMPLES OF PRACTICAL APPLICATION OF RESEARCH 
FINDINGS 

We will demonstrate the effectiveness and practical 
feasibility of using the research results obtained for the 
synthesis of the generalized neural elements with a large 
number of inputs (several hundred, several thousand) in the 
following examples. 

1.Let ,)0,...,0,0(0 =e  ),0,...,0,1(1 =e  ),...,0,...,1,0(2 =e

)1,...,0,0(=me  – m- dimensional Boolean vectors and a 
complete prototype of Boolean function units 2: HGf n →
regarding the system of characters 

)2)((},,{=
1

nmGnmii ≤≤⊂ χχχχ   is set as follows:

{ }mf eee ,...,,)1( 21
1 =−

χ   і  .)0()1( 2
11 mZff =∪ −−

χχ  

Then by definition ).1()()( 1* −== χχχ ffKfK  We will 
construct a set of the consolidated kernels 

{ ),...()(),()()( *
22

**
11

**
χχχχχ fKfKfKfKfT ee ===

})()(..., **
χχ fKfK mm e= ,

where 

{ }mfK eeeeeee ⊕⊕⊕= 1312101
* ,...,,,)( χ , 

... 

{ }.,...,,,)( 0321
* eeeeeee ⊕⊕⊕= mmmmfK χ

Each consolidated kernel kfK )( *
χ  has an 

element )0;( ≠≠⊕ iikik ee , but does not contain the 
elements ke і ie , which precede this element. So, none of 

the consolidated kernels out of )( *
χfT  does not satisfy the 

conditions of Theorem 4 and it means that the function f  is 
not realized by one generalized neural element concerning 
the system χ . 
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2. Let ,)0,...,0,0(0 =e  ),0,...,0,1(1 =e  ),...,0,...,1,0(2 =e

)1,...,0,0(=me  – m- dimensional Boolean vectors. We will 
consider the problem of the Boolean function 
implementation 2: HGf n →  regarding the system of 
characters )3)((},,{=

1
nmtGnmii ≤<≤⊂ χχχχ   , if

{ }mtf eeeeeeee ⊕⊕=−
121021

1 ,...,,,,...,,)1(χ   and  

.)0()1( 2
11 mZff =∪ −−

χχ  

The restriction 3≥t  is imposed in terms of 
unambiguousness of the definition )( *

χfK . If 3≥t , then 

any 12)( −≤+≤< mtmnmtm   and in this case 

)1()()( 1* −== χχχ ffKfK  , and in the opposite case )3( <t  

).0()( 1* −= χχ ffK  

In this case )1()( 1* −= χχ ffK . We will construct a set of 
the consolidated kernels  

.
)()()(...,

),...()(),()(
)(

*
1

*

*
22

**
11

*
*













⊕=

==
=

+ χχ

χχχχ
χ

fKfK

fKfKfKfK
fT

mmt ee

ee

We will write out the elements of the consolidated 
kernels :)( *

ifK χ  

{ },,...,,,,...,,)( 2112101
*

mtfK eeeeeeee ⊕⊕=χ

,
...,

...,,,,...,,
)(

21

321122021
2

*









⊕⊕
⊕⊕⊕⊕

=
m

tfK
eee

eeeeeeeeee
χ  

…………………………………………………………. 

.
,,...,

,,,...,,
)(

012

1121*







 ⊕⊕⊕⊕⊕

=
−

+ eee

eeeeeeeee

m

mmtmm
mtfK χ  

 Out of the elements 1
* )( χfK  we can construct a matrix 

 

  ))1((...)0...0)1(()0...0)2((

...)0...0)2(()0...0()(

*

1

*
1

*
3

*
3

3
31

*

m
tm

t
tm

t

mm

LLL

LLfK

∇∇∇∇

∇∇=

−−
+

−

−−
χξ

, (6)

where the element mtS +∈ξ  defines the order of the elements 

з 1
* )( χfK  within the matrix. 

On the basis of Theorem 5 and equality (6) we will 
construct a vector :),...,,( 21 mωωω=w  

.5...,
...,4...2,  1,1 143121

−==
=−====−=−=−= +

m

tt

ω
ωωωωωωω

Then 
1

11
−

= σwew і   { } ,)1(),(min 1
1

*)1(
0 εω χ −∈= −fxxw

where .
2
1,0 





∈ε

Taking into account that σ  is a single element of the 

group mS  and setting 
4
1=ε  we will obtain the following 

vector structure ( )( )*)1(
0

)1()1(
11 ;,..., ωωω m=w GNE regarding 

the system )(},,{=
1 nmii Gχχχχ ⊂ :

,
4

17
і5

...,4...2,,1

(1*)
0

)1(

)1(
1

)1()1(
4

)1(
3

)1(
2

)1(
1

−=−==

=−====−== +

ωω

ωωωωωω

m

tt

that realizes the function χf  in { }1,0  .

5,155
4

172))(5(

)2)(4(212
1

*)1(
0

)1()1(
0

+−=





−−−−+

+−−+−=−=
=

mttm

t
m

j
j ωωω

We reveal  and a generalized neural element with vector 
structure ( ))1(

01;ωw  realizes the function 2: HGf n →  in 
{ }.1,1−

3. We will consider the case where a number of
characters m within the system of 
characters )(},,{=

1 nmii Gχχχχ ⊂  satisfies inequality
n2mn << . Let 2: HGf n →   and { }mf eee ,...,,)1( 21

1 =−
χ , 

{ }mf eee ,...,,)0( 21
1 =−

χ , ( ))0()1(\Z(*) 11
2

1 −−− ∪= χχχ fff m , 
where the vinculum signifies a logical denial operation of the 
Boolean vector coordinates. In case of nm >  we always 
have )0()1( 11

2
−− ∪≠ χχ ffZ m . Since ∅=∩ −− )0()1( 11

χχ ff , 

the kernel )( χfK  the following exists  )1()( 1−= χχ ffK . It 
was shown above (point 1) that when 

{ }mffK eee ,...,,)1()( 21
1 == −

χχ , )0()1( 11
2

−− ∪= χχ ffZ m , 
the function f  is not realized by one GNE regarding the 

system χ . In this case )0()1( 11
2

−− ∪≠ χχ ffZ m  and we will 
demonstrate, that it is possible to construct such an extended 
kernel that ),( AfK χ , that a function corresponding to this 

kernel *
χf  will be realized by one generalized neural element 

regarding the system χ , which means that the function f  is 
also realized by one GNE concerning χ . Actually, if one of 

the elements (*)1−
χf  we will construct a set 

{ }mA eeeee ⊕⊕= 1210 ,...,, , then

{ }mtAfK eeeeeeee ⊕⊕= 121021 ,...,,,,...,,),( χ   and  

).,()( * AfKfK χχ =  

Out of the elements of the consolidated kernel 

{ }mmfKfK eeeeeeeee ,...,,,,...,,)()( 211210
*

11
* ⊕⊕== χχ

The following matrix can be constructed 
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  

))2((...

...)0...0)2(()0...0)2(()0...0()(

*
4

*
4

3

*
3

3
31

*

m

mmm

L

LLLfK

∇

∇∇∇=
−−−

χξ
 (7)

in which the order of the elements of 1
* )( χfK  into the matrix 

lines is determined by the element mS2∈ξ .  

Then, by Theorem 5 and equation (7), the coordinates of 
the vector ),...,,( 21 mωωω=w  are determined as follows: 

.42,  ,1 4321 −===−=−= mωωωωω  

Similar to the previous case we obtain 

.
4

17
і4...2,,1 *)1(

0
)1()1(

4
)1(

3
)1(

2
)1(

1 −=−====−== ωωωωωω m

Hence GNE with the structure 

vector 





 −=−−−=

4
17);4,...,4,2,1( *)1(

01 ωw implements a

function χf in { }.1,0  We will calculate 

.5,154

4
172)2m)(4(212

1

*)1(
0

)1()1(
0

+−=

=





−−−−+−=−=

=

m

m

j
j ωωω

To conclude, a generalized neural element with vector 
structure  ( 1w ; )1(

0ω )  implement a function 2: HGf n →  
concerning the system )(},,{=

1 nmii Gχχχχ ⊂ .

IV. CONCLUSION

Concerning the research findings, the effective methods 
of synthesis of neural networks on the basis of the 
generalized neural elements for the processing, compression, 
classification and recognition of discrete signals are 
developed, as well as when the approximation and iteration 
methods of synthesis of neural elements can not practically 
be applied due to a large number of inputs of neural 
elements. 
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