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Abstract—The neural network’s approach for data stream 
clustering task, that in online mode are fed to processing in 
assumption of uncertainty about amount and shapes of 
clusters, is proposed in the paper. The main idea of this 
approach is based on the kernel clustering and idea of neural 
networks ensembles, that consist of the T. Kohonen’s self-
organizing maps. Each of the clustering neural networks 
consists of different number of neurons, where number of 
clusters is connected with the quality of these neurons. All 
ensemble members process information that sequentially is fed 
to the system in the parallel mode. Experimental results have 
proven the fact that the system under consideration could be 
used to solve a wide range of Data Mining tasks when data sets 
are processed in an online mode. 

Keywords—clustering, X-means method, ensemble of neural 
networks, self-learning, T. Kohonen’s neural network. 

I. INTRODUCTION 
Data stream clustering is an important part of Data 

Mining. Many approaches to its solution have been 
developed [1, 2]. Processing of large information volumes 
requires, first of all, a high speed and simple numerical 
implementation of clustering algorithms. One of the most 
popular procedures is the K- means method due to its 
simplicity, clarity of results and possibilities for their 
explicit interpretation [3]. This method refers to the 
algorithms based on calculation of centroids-prototypes. In 
the frame of this approach, an initial data set (possibly 
growing) ( ) ( ) ( ){ }1 ,..., ,...,X x x k x N= , 

( ) ( ) ( ) ( )( )1 ,... ,...,
T n

i nx k x k x k x k R= ∈ , 1, 2, ...k N= is 
partitioned into m clusters where their number m is defined 
a priori or chosen empirically. 

The X-means method is alternative approach for 
empirical methods of clustering, but it is more bulky from 
computational point of view and connected with strict apriori 
statistical assumptions about character of initial data 
distribution [4, 5].  

Besides, both these methods require multi epoch 
procedure for initial data set X, that has limited opportunities 

for processing big data sets (Big Data) and data streams, 
when information is fed to the inputs of the clustering system 
sequentially observation by observation in the online mode 
(Data Stream Mining). In this situation number of 
observation k has the sense of current discrete time, but data 
volume N practically doesn’t limited. 

In similar situations clustering self-learning artificial 
neural networks [6-9] show themselves rather effective. First 
of all, it concerns self-organizing T. Kohonen’s maps (SOM) 
[10] that can process data in sequential mode. SOM 
processing results coincide with the K-means results, 
wherein the number of m clusters is known apriori. 

Saving capabilities of online processing using SOM and 
establishing the number of m clusters with K-means is 
possible, using the idea of clustering ensembles [11-14]. As 
elements of the ensemble it is needed to use Kohonen’s 
clustering neural networks SOMm [15], where every network 
is tuned for a different number of possible classes 
m=2,3,…,M. Under this approach, first member of the 
ensemble SOM2 in Kohonen’s layer contains only two 
neurons with vectors of synaptic weights 2 2

1 2,w w . The last 
member SOMM contains M neurons with centroids-weights 

1 2, ,...,M M M
Mw w w . 

In ensemble self-learning process, all SOMm are operate 
in parallel. As the final result is chosen clustering network-
winner, which shows the most appropriate results in terms of 
the applied quality criterion for clustering [2,16]. Note that in 
every SOMm at each cycle k of information processing 
neuron-winner is chosen exactly the same as neural network-
winner is chosen in ensemble at each tact. It is the best result 
of clustering. 

An essential restriction that reduces approach capabilities 
is the requirement of formed clusters linear separability and 
convexity. Whereas the real data have the ability to form 
classes of completely arbitrary form. In such a situation it 
can be useful to use T. Cover’s theorems of linear separation 
in spaces of higher dimension and J. Mercer’s kernels, which 
provide this increasing [17, 18]. Based on this approach so-
called, kernel self-organizing maps (KSOM) were developed 
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[19-21]. They show quite good results under conditions of 
clusters arbitrary forms with a known number m of them, 
using fixed volume N of the processed selection. Therefore, 
this seems expedient to develop an ensemble of kernel 
clustering neural networks. It is intended for data streams 

online processing under conditions of an unknown or 
changing number of classes. 

The architecture of kernel clustering neural networks 
ensemble is shown on Fig. 1. It contains five layers of 
information processing. 

 
Fig. 1. The architecture of kernel clustering neural networks ensemble 

The initial information to be clustered is fed to the zero 
(input) layer of the system as a 
sequence (1), (2),..., ( ),..., ( ),...x x x k x N  Then, it enters to the 
first hidden layer (RL) of radial-basis functions, formed by  
R-neurons. Right in this layer increasing in the 
dimensionality of the input space with the help of kernel 
functions system 1 2( ), ( ),..., ( ),..., ( )l hx x x xϕ ϕ ϕ ϕ , h>n, 
occurs. As a functions, either Gaussians or other bell-shaped 
functions are used, for example, 

12

2( ) 1 l
l

l

x c
x

x c
ϕ

ϕ ϕ

γ
ϕ

γ γ

−
 −
 = + =
  + −   

where (n 1)lc − ×  - vector that sets the "center" of the radial-
basis function ( )l xϕ , ϕγ  - a scalar parameter that determines 
the receptive field area, which is the same as "width" of this 
function. 

Thus, when a vector signal enters to the system 
input ( ) ( ) ( ) ( )( )1 ,... ,...,

T n
i nx k x k x k x k R= ∈ , at the output 

of the first RL hidden layer, a vector signal is 
formed: 1( ( )) ( ( ( )),..., ( ( )),..., ( ( )))T h

l hx k x k x k x k Rϕ ϕ ϕ ϕ= ∈ , 
h n> . 

The second NL hidden layer realizes an elementary 
signal ( ( ))x kϕ  normalization operation in the form 

( ( ))( ( ))
( ( ))
x kx k
x k

ϕϕ
ϕ

=
 

which is needed for effective work of the third SL hidden 
layer. It was formed at the expense of (M-1) Kohonen’s self-
organizing maps SOMm, each of which works under the 
assumption that in the data sample being processed, there are 
m classes. Clustering quality is provided by each SOMm and 
is estimated using one or another validation index [2] in the 
fourth VL hidden layer. It calculates corresponding indices 

2 3, , ..., , ...,m MVI VI VI VI  for every possible m=2,3,…,M. 

Finally, in the output layer containing a single node, an 
optimum detector, the particular SOMm is determined. It 
provides best clustering quality, wherein assumed that in the 
analyzing data array there are m clusters. 

II. THE KERNEL CLUSTERING SYSTEM AND ITS SELF-
LEARNING BASED ON NEURAL NETWORKS ENSEMBLE 

Self-learning process of considered system is realized in 
the first hidden layer RL, where the centers lс , 1, 2, ...,l h=  
of kernel functions ( )l xϕ  are tuned. Also, it realized in a 
third hidden layer SL, where the synaptic weights m

jw , 
2,3,...,m M= , 1, 2...,j m=  are estimated for each neural 

network of SOMm ensemble. 

Let’s consider the tuning process for the centers of kernel 
functions, consisting the following steps [22]: 

Step 0: set threshold value ∆ that determines the 
indiscernibility level of two neighboring kernel functions. 
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After that, the maximum possible number h of these 
functions and receptive fields parameter ϕγ . 

Step 1: when the first vector-observation x(1) is fed to the 
system input, the first center 1c  and radial-basis function are 
being formed. 

1 2
1

( )x
x c
ϕ

ϕ

γ
ϕ

γ
=

+ −  

where 1 (1)c x= . 

Step 2: when the second vector-observation x(2) is fed to 
the system input, inequality has been checked 

1(2)x c− ≤ Δ  

and if it is satisfied, then x(2) does not form a new center. 
And if the following condition is satisfied 

1(2) 2 ,x cΔ < − ≤ Δ  

then 1c  is being corrected in accordance with the T. 
Kohonen’s self-learning rule “Winner takes all” [10]: 

1 1 1(2) c (1) (2)( (2) (1))c x cη= + −  

where 1(1) (1)c x= , 0 (2) 1η< <  is learning rate parameter. If 
the condition  

12 (2)x cΔ < −  

is satisfied then a new kernel function is formed 

2 2 2
2

( ) .
(2)

x
x c x x

ϕ ϕ

ϕ ϕ

γ γ
ϕ

γ γ
= =

+ − + −  

After every new observation x(k) this process is realized.  

If on the step N h radial-basic functions are generated 
then in the future amount of them doesn’t grow. Refinement 
centers lс , 1, 2, ...,l h=  that were already generated can be 
provide only according to the condition (1) and the self-
learning rule (2). 

The adaptation process also consists of three steps [10]: 
competition, cooperation and synaptic adaptation for every 

mSOM  in ensemble, wherein synaptic weights vectors m
jw  

describe h-dimensional centroids of formed clusters.  

On the competition step input signal of second hidden 
layer NL ( ( )) hx k Rϕ ∈  is fed to every input of all mSOM  
where they are compared with each of synaptic weights 
vectors ( 1)m

jw k −  in the sense of distance 

( ( ( )), ( 1)) ( ( )) ( 1)m m
j jD x k w k x k w kϕ ϕ− = − − 

, 
(3) 

1, 2,...mj = ; 2,3,...m M= . 

Because ( ( )) 1x kϕ = , instead of the Euclidean metric 
(3) more easier is to use cosine similarity measure  

( ( ( )), ( 1)) ( ( )) ( 1)m T m
j jsim x k w k x k w kϕ ϕ− = −   

by the help of which for every mSOM  its neuron-winners are 
determined, for that  

*( ( )) ( 1) max ( ( )) ( 1)T m T m
j jj

x k w k x k w kϕ ϕ− = − 
. 

On the cooperation step all neurons-winners of the 
ensemble generate topological neighborhoods areas, in 
which not only winners tuned, but and their nearest 
neighbors. 

This area is described by the membership function 
( , )j lϕ , that are similar to the radial-basis functions of the 

first hidden layer:  

2*
( , )

( 1) ( 1)m m
l j

j l
w k w k

γϕ
γ

=
+ − − −

. 

The synaptic centroids-weights specification of every 
mSOM  is occurs on the synaptic adaptation step by the  

T. Kohonen’s self-learning rule “Winners takes more”: 

( ) ( 1) ( ) ( , )( ( ( )) ( 1))m m m
l l lw k w k k j l x k w kη ϕ ϕ= − + − − . 

(4) 

It's easy to see, that for winner *m
jw  (4) coincides with the 

learning rule (2). It has to be noted, that in the self-learning 
rule (4) learning rate parameters ( )kη and γ  usually are 
selected according to the empirical considerations and must 
be decrease monotonically in the tuning process. 

This process is easy to organize by the system of the 
recurrent relations 

21( ) ( );  ( ) ( 1) ( ( )) ( 1) 1,
( ) ( ) ( 1),  0 1,
k r k r k r k x k r k
k k k

η α ϕ α
γ η γ α

− = = − + = − +


= − < ≤



 

that at the 1α =  automatically is transformed to the 
stochastic approximation procedure. It’s easy to see too, that 
first and third layers of the system in fact are tuned according 
to the same type procedures like WTA and WTM [10]. 

III. TUNING OF THE FOURTH HIDDEN LAYER 
The estimation of the clustering quality is produced in the 

fourth hidden layer by the validation index mVI [1], wherein 
this index is calculated for every of the T. Kohonen’s maps 

mSOM , 2,3,...m M= . 

As the such index it’s useful to implement Davies-
Bouldin criterion [23], with the help of which clustering 
quality can be estimated even in the case of non-convex 
classes. 
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In the case of the m clusters this index can be written in 
the form 

11

( )
s( ( ), ( ), ( ( )) ( ( ), ( ), ( ( )))

max
( ( ), ( ))

m mm
j j q q

m mq mj j qq j

DB m
w k u k x k s w k u k x k

D w k w k
ϕ ϕ

≤ ≤= ≠

=

−
=

 

 

where ( ( ), ( ))m m
j qD w k w k  - distance between centroids 

( ( ), w ( )) ( ) ( )m m m m
j q j qD w k k w k w k= −

, 

s( ( ), ( ), ( ( )))m
j jw k u k x kϕ −  the intracluster scattering 

characteristics for j-th cluster: 

1
22

1

1

( ) ( ( )) w ( )
s( ( ), ( ), ( (k)))

( )

N
m

j j
m k
j j N

j
k

u k x k k
w k u k x

u k

ϕ
ϕ =

=

 − 
 =
 
 
 








, 

( )ju k  -crisp membership function of the vector ( ( ))x kϕ  to 
the j-th cluster type:  

1,  if ( ( )) belongs to j-th cluster,
( )

0 otherwise.j

x k
u k

ϕ
= 




 

As the optimal number of clusters *m  value, providing 
minimum of the DB(m), is selected: 

{ }*( ) min (2), (3),..., ( )
m

DB m DB DB DB M=
, 

that is calculated in the output layer. 

In the situation then non-stationary data are processed in 
online mode, is necessary to modify DB(m) index for 
processing data on the “sliding-window” mode of dimension 
1 s N< < . Wherein only intercluster distance characteristics, 
that are calculated on the “sliding-window”, are modified by 
expression 

1
22

1

1

( ) ( ( )) ( )
s( ( ), u ( ), ( ( )),s)

( )

= − +

= − +

 − 
 =
 
 
 








k
m

j j
m k s
j j k

j
k s

u x w k
w k k x k

u

τ

τ

τ ϕ τ
ϕ

τ
 

when the data volume N isn’t limited and grows with time 
1, 2,..., N, N 1,...k = +  

IV. EXPERIMENTAL RESULTS 
We have tested proposed method with two different 

training data sets. The first data set is artificial generated so 

that it contains 3 clusters, 300 observations were every 
observation has 3 features. The second data set “Iris” is taken 
from UCI-Repository [24]. This data set consists of 150 
observations that are divided into 3 classes where every 
observation has 3 random features. The clusters are clearly 
visible in the artificial generated data set and shown in 
Figure 2. 

 
Fig. 2. The artificial generated data set 

The computational accuracy of proposed method was 
compared with known K-means algorithm. These clustering 
results were estimated by the Davies-Bouldin criterion. The 
clustering accuracies for a series of 50 experiments are 
shown in Table I and Table II. 

TABLE I.  THE MEAN CLUSTERING ACCURACIES FOR THE DIFFERENT 
NUMBERS OF CLUSTERS (THE ARTIFICIAL GENERATED DATA SET) 

Method SOMm k-means 

clustering accuracies for 2 
clusters 0,71 0,70 

clustering accuracies for 3 
clusters 0,89 0,76 

clustering accuracies for 4 
clusters 0,68 0,67 

TABLE II.  THE MEAN CLUSTERING ACCURACIES FOR THE DIFFERENT 
NUMBERS OF CLUSTERS (IRIS) 

Method SOMm k-means 

clustering accuracies for 2 
clusters 0,84 0,83 

clustering accuracies for 3 
clusters 0,91 0,87 

clustering accuracies for 4 
clusters 0,72 0,73 

 

For visualization, taken data sets were projected by the 
PCA (principal component analysis) method to three 
principal components. Visualization results of the proposed 
ensemble are shown in (Fig. 3). 
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a) The artificial generated data set 

 

b) Data set “Iris” 

Fig. 3. Visualization results of the proposed ensemble 

V. CONCLUSION 
The neural network approach for data stream clustering 

task, that in online mode are fed to processing in assumption 
that, neither the number of clusters nor their shape are 
known, is proposed in the paper. The main idea of this 
approach is based on the kernel clustering and neural 
networks ensembles, that consist of the T. Kohonen’s self-
organizing maps. 

The proposed system is characterized by the simplicity of 
numerical implementation, high speed, and can be used for 

solving different tasks of processing data streams in 
conditions of apriori uncertainty of their properties. 
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